(本小題滿分13分)如圖所示,在四棱臺中, 底面ABCD是正方形,且底面 , .
(1)求異面直線所成角的余弦值;
(2)試在平面中確定一個點,使得平面;
(3)在(2)的條件下,求二面角的余弦值.
(1)直線AB1與DD1所成角的余弦值為.
(2)略
(3)二面角的余弦值為.
解:以D為原點,DA、DC、DD1所在直線為軸,建立如圖所示的空間直角坐標系,則D(0,0,0),A(),,
,,.
(1)
,
即直線AB1與DD1所成角的余弦值為.   …………………(4分)
(2)設(shè)
平面
的中點.   ………………………………………………(9分)
(3)由(2)知為平面的法向量.
設(shè)為平面的法向量,
.


,
即二面角的余弦值為.   …………………………………(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分12分)
已知正方體ABCD—A1B1C1D1,其棱長為2,O是底ABCD對角線的交點。

求證:
(1)C1O∥面AB1D1;
(2)A1C⊥面AB1D1。 
(3)若M是CC1的中點,求證:平面AB1D1⊥平面MB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱AA1=2。
(I)求證:C1D//平面ABB1A1
(II)求直線BD1與平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分別交AC、PC于D、E兩點,又PB=BC,PA="A" B.
(Ⅰ)求證:PC⊥平面BDE;
(Ⅱ)若點Q是線段PA上任一點,求證:BD⊥DQ;
(Ⅲ)求線段PA上點Q的位置,使得PC//平面BDQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,已知△是正三角形,平面,的中點,在棱上,且,
(1)求證:平面;
(2)求平面與平面所成的銳二面角的余弦值;
(3)若的中點,問上是否存在一點,使平面?若存在,說明點的位置;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(9分)如圖,在四棱錐PABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,AB=,BC=1,PA=2,EPD的中點.
(1)求直線BE與平面ABCD所成角的正切值;
(2)在側(cè)面PAB內(nèi)找一點N,使NE⊥面PAC,
并求出N點到ABAP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4-1:幾何證明選講
如圖,已知是⊙的切線, 為切點,是⊙O的割線,與⊙交于 兩點,圓心的內(nèi)部,點的中點.
(1)求證:,,,四點共圓;
(2)求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為正三角形,平面ABC,AD//BE,且BE=AB+2AD,P是EC的中點。
求證:(1)PD//平面ABC;
(2)EC平面PBD。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于直線、與平面、,有下列四個命題: 
,則;   ②,則
,則;  ④,則.
其中正確命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案