已知圓,橢圓,若的離心率為,如果相交于兩點(diǎn),且線段恰為圓的直徑,求直線與橢圓的方程。

直線方程為,橢圓方程為:

解析試題分析:由,得,
于是橢圓的方程可化為,
因?yàn)榫段恰為圓的直徑,所以過(guò)圓心,且圓心為的中點(diǎn),
所以可設(shè)直線的方程為,
得:       ①
設(shè),則,即,得,
因此直線的方程為:,即.
此時(shí),①式即為
那么,解得
所以橢圓方程為
故所求的直線方程為,橢圓方程為:.
考點(diǎn):本小題主要考查由圓的標(biāo)準(zhǔn)方程、橢圓的標(biāo)準(zhǔn)方程和性質(zhì)、直線與圓錐曲線的位置關(guān)系,考查學(xué)生的運(yùn)算求解能力和推理論證能力.
點(diǎn)評(píng):解析幾何的本質(zhì)問(wèn)題是用代數(shù)方法解決幾何問(wèn)題,所以一定要注意函數(shù)與方程思想、數(shù)形結(jié)合思想、轉(zhuǎn)化與劃歸思想等數(shù)學(xué)思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓)的離心率,直線與橢圓交于不同的兩點(diǎn),以線段為直徑作圓,圓心為
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)圓軸相切的時(shí)候,求的值;
(Ⅲ)若為坐標(biāo)原點(diǎn),求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,離心率為,且過(guò)點(diǎn)(4,-)(1)求雙曲線的方程.(2)若點(diǎn)M(3,m)在雙曲線上,求證:.(3)若點(diǎn)A,B在雙曲線上,點(diǎn)N(3,1)恰好是AB的中點(diǎn),求直線AB的方程(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

. (本題滿分15分)已知點(diǎn)為一個(gè)動(dòng)點(diǎn),且直線的斜率之積為
(I)求動(dòng)點(diǎn)的軌跡的方程;
(II)設(shè),過(guò)點(diǎn)的直線兩點(diǎn),的面積記為S,若對(duì)滿足條件的任意直線,不等式的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積是,試討論點(diǎn)的軌跡是什么。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)設(shè)雙曲線的兩個(gè)焦點(diǎn)分別為,離心率為2.
(Ⅰ)求此雙曲線的漸近線的方程;
(Ⅱ)若、分別為上的點(diǎn),且,求線段的中點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn).
為坐標(biāo)原點(diǎn),求證:;
②設(shè)點(diǎn)在線段上運(yùn)動(dòng),原點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,求四邊形面積的最小值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸正半軸的拋物線上有一點(diǎn)點(diǎn)到拋物線焦點(diǎn)的距離為1.(1)求該拋物線的方程;(2)設(shè)為拋物線上的一個(gè)定點(diǎn),過(guò)作拋物線的兩條互相垂直的弦,,求證:恒過(guò)定點(diǎn).(3)直線與拋物線交于,兩點(diǎn),在拋物線上是否存在點(diǎn),使得△為以為斜邊的直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題分12分)
如圖,斜率為1的直線過(guò)拋物線的焦點(diǎn),與拋物線交于兩點(diǎn)A、B, 將直線按向量平移得到直線,上的動(dòng)點(diǎn),為拋物線弧上的動(dòng)點(diǎn).
(Ⅰ) 若 ,求拋物線方程.
(Ⅱ)求的最大值.
(Ⅲ)求的最小值.
 

查看答案和解析>>

同步練習(xí)冊(cè)答案