不等式1<x<
π
2
成立是不等式(x-1)tanx>0成立的( �。�
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、非充分非必要條件
分析:先根據(jù)x的范圍,判定(x-1)tanx的符號(hào),然后取x=4時(shí),(x-1)tanx>0,但4∉(1,
π
2
),從而說明若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件.
解答:解:∵1<x<
π
2
∴(x-1)>0,tanx>0則(x-1)tanx>0
而當(dāng)x=4時(shí),(x-1)>0,tanx>0則(x-1)tanx>0,但4∉(1,
π
2

∴不等式1<x<
π
2
成立是不等式(x-1)tanx>0成立的充分不必要條件
故選A.
點(diǎn)評(píng):判斷充要條件的方法是:
①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;
②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;
③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;
④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x可以表示成一個(gè)奇函數(shù)g(x)與一個(gè)偶函數(shù)h(x)之和,若關(guān)于x的不等式ag(x)+h(2x)≥0對(duì)于x∈[1,2]恒成立,則實(shí)數(shù)a的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
y≤x
y≥-x
x≤2
表示的平面區(qū)域?yàn)镸,直線y=x與曲線y=
1
2
x2
所圍成的平面區(qū)域?yàn)镹.
(1)區(qū)域N的面積為
2
3
2
3

(2)現(xiàn)隨機(jī)向區(qū)域M內(nèi)拋一粒豆子,則豆子落在區(qū)域N內(nèi)的概率為
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
0(x≤0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
數(shù)列{an}滿足an=f(n)(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)x軸、直線x=a與函數(shù)y=f(x)的圖象所圍成的封閉圖形的面積為S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整數(shù)N,使得不等式an-1005>S(n)-S(n-1)對(duì)一切n>N恒成立?若存在,則這樣的正整數(shù)N共有多少個(gè)?并求出滿足條件的最小的正整數(shù)N;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由直線x+y+1=0,x-y=-1,2x-y=2圍成的三角形區(qū)域(包括邊界)用不等式(組)可表示為
x+y+1≥0
x-y≥-1
2x-y≤2
x+y+1≥0
x-y≥-1
2x-y≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島一模)已知函數(shù)f(x)=
1
3
x3-x

(1)若不等式f(x)<k-2005對(duì)于x∈[-2,3]恒成立,求最小的正整數(shù)k;
(2)令函數(shù)g(x)=f(x)-
1
2
ax2+x(a≥2)
,求曲線y=g(x)在(1,g(1))處的切線與兩坐標(biāo)軸圍成的三角形面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案