若橢圓9x2+25y2=900上一點P到左焦點F1的距離等于6,則P點到右焦點F2的距離等于
 
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)橢圓的定義,橢圓上的點到兩焦點的距離之和為2a來計算.
解答: 解:橢圓9x2+25y2=900化為標準方程為
x2
100
+
y2
36
=1
,∴a=10,
根據(jù)橢圓的定義,|PF1|+|PF2|=2a=20,
∵P到左焦點F1的距離等于6,
∴|PF2|=14.
故答案為:14.
點評:本題給出焦點在x軸上的橢圓,在已知點P到橢圓一個焦點距離的情況下求它到另一個焦點的距離.著重考查了橢圓的定義與標準方程等知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=
3
(cos2x-sin2x)-2cos2(x+
π
4
)+1的定義域為[0,
π
2
].
(1)求f(x)的最小值.
(2)△ABC中,A=45°,b=3
2
,邊a的長為6,求角B大小及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx,則y=f(x)與g(x)=lgx的圖象的交點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}的通項公式an=
1
n(n+1)
(n∈N*),則{an}的前n項和Sn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(2)=-3,且對任意x∈R總有f′(x)>2,則不等式f(x)>2x-7的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單位向量
e1
e2
所夾的角為60°,則(3
e1
-2
e2
)•(
e1
+
e2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式 
x2-8x+20
mx2-mx-1
<0對一切x恒成立,則實數(shù)m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a1=5,an+1=2an+3(n≥1),則{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法:
①“?x∈R,2x>3“的否定是“?x∈R,2x≤3”.
②函數(shù)y=sin(2x+
π
4
)sin(
π
4
-2x)的最小正周期為π.
③命題“函數(shù)f(x)在x=x0處有極值則f′(x)=0”的否命題是真命題.
④f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),當x>0時的解析式是f(x)=2x,則當x<0時的解析式是f(x)=-2-x
其中正確的說法是
 
.(填序號)

查看答案和解析>>

同步練習冊答案