數(shù)學(xué)公式(3x)dx=


  1. A.
    f(b)-f(a)
  2. B.
    f(3b)-f(3a)
  3. C.
    數(shù)學(xué)公式〔f(3b)-f(3a)〕
  4. D.
    3〔f(3b)-f(3a)〕
C
分析:先求出f′(3x)的原函數(shù),注意運用復(fù)合函數(shù)的導(dǎo)數(shù)運算法則,然后利用定積分的運算法則進行求解即可.
解答:(3x)dx=f(3x)=[f(3b)-f(3a)]
故選C.
點評:本題主要考查了定積分的運算,解題的關(guān)鍵是求f′(3x)的原函數(shù),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出的下列四個命題中:
①命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
②“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的充分不必要條件;
③設(shè)圓x2+y2+Dx+Ey+F=0(D2+E2-4F>0)與坐標(biāo)軸有4個交點,分別為A(x1,0),B(x2,0),C(0,y1),D(0,y2),則x1x2-y1y2=0;
④關(guān)于x的不等式|x+1|+|x-3|≥m的解集為R,則m≤4.
其中所有真命題的序號是
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

b
a
f′
(3x)dx=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西大學(xué)附中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

給出的下列四個命題中:
①命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
②“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的充分不必要條件;
③設(shè)圓x2+y2+Dx+Ey+F=0(D2+E2-4F>0)與坐標(biāo)軸有4個交點,分別為A(x1,0),B(x2,0),C(0,y1),D(0,y2),則x1x2-y1y2=0;
④關(guān)于x的不等式|x+1|+|x-3|≥m的解集為R,則m≤4.
其中所有真命題的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西大學(xué)附中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

給出的下列四個命題中:
①命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
②“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的充分不必要條件;
③設(shè)圓x2+y2+Dx+Ey+F=0(D2+E2-4F>0)與坐標(biāo)軸有4個交點,分別為A(x1,0),B(x2,0),C(0,y1),D(0,y2),則x1x2-y1y2=0;
④關(guān)于x的不等式|x+1|+|x-3|≥m的解集為R,則m≤4.
其中所有真命題的序號是   

查看答案和解析>>

同步練習(xí)冊答案