【題目】
如圖,某城市有一塊半徑為40的半圓形(以為圓心,為直徑)綠化區(qū)域,現(xiàn)計劃對其進行改建,在的延長線上取點,使,在半圓上選定一點,改建后的綠化區(qū)域由扇形區(qū)域和三角形區(qū)域組成,其面積為,設
(1)寫出關于的函數(shù)關系式,并指出的取值范圍;
(2)試問多大時,改建后的綠化區(qū)域面積最大.
【答案】(1)S=1600sinx+800x,0<x<π(2)
【解析】
試題分析:(1)求出扇形區(qū)域AOC、三角形區(qū)域COD的面積,即可求出S關于x的函數(shù)關系式S(x),并指出x的取值范圍;(2)求導數(shù),確定函數(shù)的單調性,即可得出結論
試題解析:(1)因為扇形 AOC的半徑為 40 m,∠AOC=x rad,
所以 扇形AOC的面積S扇形AOC==800x,0<x<π. ………………… 2分
在△COD中,OD=80,OC=40,∠COD=π-x,
所以△COD 的面積S△COD=·OC·OD·sin∠COD=1600sin(π-x)=1600sinx.……………… 4分
從而 S=S△COD+S扇形AOC=1600sinx+800x,0<x<π. ………… 6分
(2)由(1)知, S(x)=1600sinx+800x,0<x<π.
S′(x)=1600cosx+800=1600(cosx+). ………… 8分
由 S′(x)=0,解得x=.
從而當0<x<時,S′(x)>0;當<x<π時, S′(x)<0 .
因此 S(x)在區(qū)間(0,)上單調遞增;在區(qū)間(,π)上單調遞減. ……………… 11分
所以 當x=,S(x)取得最大值.
答:當∠AOC為時,改建后的綠化區(qū)域面積S最大. ……………… 14分
科目:高中數(shù)學 來源: 題型:
【題目】把離心率的雙曲線稱為黃金雙曲線.給出以下幾個說法:
①雙曲線是黃金雙曲線;
②若雙曲線上一點到兩條漸近線的距離積等于,則該雙曲線是黃金雙曲線;
③若為左右焦點,為左右頂點,且,則該雙曲線是黃金雙曲線;
④.若直線經(jīng)過右焦點交雙曲線于兩點,且,,則該雙曲線是黃金雙曲線;
其中正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列各式:
(1);
(2)已知,則;
(3)函數(shù)的圖象與函數(shù)的圖象關于y軸對稱;
(4)函數(shù)的定義域是R,則m的取值范圍是;
(5)函數(shù)的遞增區(qū)間為.
正確的有______________________.(把你認為正確的序號全部寫上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時, 求曲線的極值;
(2)求函數(shù)的單調區(qū)間;
(3)若對任意及時, 恒有成立, 求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|-1≤x≤2},B={x|m-1≤x≤2m+1},已知BA.
(1)當x∈N時,求集合A的子集的個數(shù);
(2)求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為40%,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.40 B.0.30
C.0.35 D.0.25
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對任意的,均為有理數(shù)),為一無理數(shù)列(即對任意的,為無理數(shù)).
(1)已知,并且對任意的恒成立,試求的通項公式.
(2)若為有理數(shù)列,試證明:對任意的,恒成立的充要條件為.
(3)已知,,對任意的,恒成立,試計算.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)已知函數(shù)()的最小正周
期為,
(Ⅰ)求的值;
(Ⅱ)將函數(shù)的圖像上各點的橫坐標縮短到原來的,縱坐標不變,得到函數(shù)
的圖像,求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com