【題目】某水仙花經(jīng)營部每天的房租、水電、人工等固定成本為1000每盆水仙花的進(jìn)價(jià)是10,銷售單價(jià)() ()與日均銷售量()的關(guān)系如下表,并保證經(jīng)營部每天盈利

20

35

40

50

400

250

200

100

20

35

40

50

400

250

200

100

(Ⅰ) 在所給的坐標(biāo)圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實(shí)數(shù)對(duì)的對(duì)應(yīng)點(diǎn)并確定的函數(shù)關(guān)系式;

(Ⅱ)求出的值并解釋其實(shí)際意義;

(Ⅲ)請(qǐng)寫出該經(jīng)營部的日銷售利潤的表達(dá)式,并回答該經(jīng)營部怎樣定價(jià)才能獲最大日銷售利潤?

【答案】(1)見解析;(2)見解析;(3)見解析

【解析】分析:(I)描點(diǎn)畫圖得到一條直線,設(shè)直線,代入兩點(diǎn)求得直線方程;()根據(jù)(I)的結(jié)果可知,單位價(jià)格每上漲1元,銷售量減少10盆;(,根據(jù)定義域求二次函數(shù)的最大值.

詳解:(Ⅰ)由題表作出,,,的對(duì)應(yīng)點(diǎn),它們分布在一條直線上,如圖所示.

設(shè)它們共線于,則取兩點(diǎn)的坐標(biāo)代入得

(,且),

經(jīng)檢驗(yàn),也在此直線上.

所求函數(shù)解析式為(,且).

(Ⅱ)由(Ⅰ)可得,實(shí)際意義表示:銷售單價(jià)每上漲元,日銷售量減少盆.

(Ⅲ)依題意

(,且).

當(dāng)時(shí),有最大值,故銷售單價(jià)定為元時(shí),才能獲得最大日銷售利潤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角,所對(duì)的邊分別為,c.已知

則角的大小________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知函數(shù),其中,記函數(shù)的定義域?yàn)?/span>.

(1)求函數(shù)的定義域;

(2)若函數(shù)的最大值為,求的值;

(3)若對(duì)于內(nèi)的任意實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn) 的極坐標(biāo)為 ,直線 的極坐標(biāo)方程為 ,且點(diǎn) 在直線 上.
(1)求 的值及直線 的直角坐標(biāo)方程;
(2)圓 的極坐標(biāo)方程為 ,試判斷直線 與圓 的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了豐富改善居民生活,市招商局引進(jìn)外商到開發(fā)區(qū)一次性投資72萬元建起了一座蔬菜加工廠.以后每年還需要繼續(xù)投資:第一年需要要各種經(jīng)費(fèi)為12萬元,從第二年開始每年所需經(jīng)費(fèi)均比上一年增加4萬元,該加工廠每年銷售總收入為50萬元.

(1)若扣除投資及各種經(jīng)費(fèi),該加工廠從第幾年開始純利潤為正?

(2)若干年后,外商為開發(fā)新項(xiàng)目,對(duì)加工廠有兩種處理方案:

若年平均純利潤達(dá)到最大值時(shí),便以48萬元價(jià)格出售該廠;

若純利潤總和達(dá)到最大值時(shí),便以16萬元的價(jià)格出售該廠.

問:哪一種方案比較合算?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且滿足+n=2(n∈)

(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

(2)數(shù)列滿足(n∈),其前n項(xiàng)和為,試求滿足+>2018的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱的底面是正三角形,側(cè)面為菱形,且,平面平面,分別是的中點(diǎn).

(I)求證:平面;

(II)求證:;

(III)求BA1與平面所成角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求求值:
(1)用輾轉(zhuǎn)相除法求123和48的最大公約數(shù).
(2)用更相減損術(shù)求80和36的最大公約數(shù).
(3)把89化為二進(jìn)制數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案