已知點A(2,0)關于直線l1:x+y-4=0的對稱點為A1,圓C:(x-m)2+(y-n)2=4(n>0)經(jīng)過點A和A1,且與過點B(0,-2
2
)的直線l2相切.
(1)求圓C的方程;(2)求直線l2的方程.
分析:(1)由點A和A1均在圓C上且關于直線l1對稱,得到圓心在直線l1上,由圓的方程找出圓心坐標,代入直線l1,得到關于m與n的方程,然后把點A的坐標代入到圓的方程中,得到關于m與n的另一個方程,聯(lián)立兩方程即可求出m與n的值,確定出圓C的方程;
(2)當直線l2的斜率存在時,設出直線l2的方程,由直線與圓相切時圓心到直線的距離等于圓的半徑,利用點到直線的距離公式列出關于k的方程,求出方程的解即可得到k的值,從而確定出直線l2的方程;當直線l2的斜率不存在時,x=0顯然滿足題意,綜上,得到所有滿足題意得直線l2的方程.
解答:解:(1)∵點A和A1均在圓C上且關于直線l1對稱,
∴圓心在直線l1上,由圓C的方程找出圓心C(m,n),
把圓心坐標直線l1,點A代入圓C方程得:
m+n=4
(m-2)2+n2=4
,解得
m=2
n=2
m=4
n=0
(與n>0矛盾,舍去),
則圓C的方程為:(x-2)2+(y-2)2=4;
(2)當直線l2的斜率存在時,
設直線l2的方程為y=kx-2
2
,由(1)得到圓心坐標為(2,2),半徑r=2,
根據(jù)題意得:圓心到直線的距離d=
|2k-2-2
2
|
k2+1
=r=2,解得k=1,
所以直線l2的方程為y=x-2
2
;
當直線l2的斜率不存在時,
易得另一條切線為x=0,
綜上,直線l2的方程為y=x-2
2
或x=0.
點評:此題考查了圓的標準方程,以及直線與圓的位置關系.要求學生會利用待定系數(shù)法求圓的方程,掌握直線與圓相切時滿足的關系,在求直線l2的方程時,注意由所求直線的斜率存在還是不存在,利用分類討論的方法得到所有滿足題意得方程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點A(2,0)關于直線l1:x+y-4=0的對稱點為A′,圓C:(x-m)2+(y-n)2=4(n>0)經(jīng)過點A和A′,且與過點B(0,-2
2
)
的直線l2相切,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年重慶市南開中學高三(上)1月月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知點A(2,0)關于直線l1:x+y-4=0的對稱點為A1,圓C:(x-m)2+(y-n)2=4(n>0)經(jīng)過點A和A1,且與過點B(0,-2)的直線l2相切.
(1)求圓C的方程;(2)求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年山東省青島市平度一中高二(上)第二次段考數(shù)學試卷(理科)(解析版) 題型:解答題

已知點A(2,0)關于直線l1:x+y-4=0的對稱點為A1,圓C:(x-m)2+(y-n)2=4(n>0)經(jīng)過點A和A1,且與過點B(0,-2)的直線l2相切.
(1)求圓C的方程;(2)求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年重慶市南開中學高三(上)1月月考數(shù)學試卷(文科)(解析版) 題型:解答題

已知點A(2,0)關于直線l1:x+y-4=0的對稱點為A1,圓C:(x-m)2+(y-n)2=4(n>0)經(jīng)過點A和A1,且與過點B(0,-2)的直線l2相切.
(1)求圓C的方程;(2)求直線l2的方程.

查看答案和解析>>

同步練習冊答案