【題目】為了治理大氣污染,某市2017年初采用了一系列措施,比如“煤改電”,“煤改氣”,“整治散落污染企業(yè)”等.下表是該市2016年11月份和2017年11月份的空氣質(zhì)量指數(shù)()(指數(shù)越小,空氣質(zhì)量越好)統(tǒng)計(jì)表.根據(jù)表中數(shù)據(jù)回答下列問(wèn)題:

(1)將2017年11月的空氣質(zhì)量指數(shù)數(shù)據(jù)用該天的對(duì)應(yīng)日期作為樣本編號(hào),再用系統(tǒng)抽樣方法從中抽取6個(gè)數(shù)據(jù),若在2017年11月16日到11月20日這五天中用簡(jiǎn)單隨機(jī)抽樣抽取到的樣本的編號(hào)是19號(hào),寫(xiě)出抽出的樣本數(shù)據(jù);

(2)根據(jù)《環(huán)境空氣質(zhì)量指數(shù)()技術(shù)規(guī)定(試行)》規(guī)定:當(dāng)空氣質(zhì)量指數(shù)為(含50)時(shí),空氣質(zhì)量級(jí)別為一級(jí),用從(1)中抽出的樣本數(shù)據(jù)中隨機(jī)抽取三天的數(shù)據(jù),空氣質(zhì)量級(jí)別為一級(jí)的天數(shù)為,求的分布列及數(shù)學(xué)期望;

(3)求出這兩年11月空氣質(zhì)量指數(shù)為一級(jí)的概率,你認(rèn)為該市2017年初開(kāi)始采取的這些大氣污染治理措施是否有效?

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析.

【解析】試題分析:(1)根據(jù)系統(tǒng)抽樣的特征,確定分段間隔,得出樣本的編號(hào),再找出對(duì)應(yīng)的樣本數(shù)據(jù);(2)隨機(jī)變量所有可能的取值為0,1,2,3,分別求出時(shí)的概率,寫(xiě)出分布列,求出數(shù)學(xué)期望;(3)分別求出這兩年11月空氣質(zhì)量指數(shù)為一級(jí)的概率,作比較,得出結(jié)論。

試題解析:(1)系統(tǒng)抽樣,分段間隔,

這些抽出的樣本的編號(hào)依次是4號(hào)、9號(hào)、14號(hào)、19號(hào)、24號(hào)、29號(hào),

對(duì)應(yīng)的樣本數(shù)據(jù)依次是、56、94、48、40、221.

(2)隨機(jī)變量所有可能的取值為0,1,2,3,

,,,

隨機(jī)變量的分布列為:

0

1

2

3

所以. 

(3)2016年11月指數(shù)為一級(jí)的概率,

2017年11月指數(shù)為一級(jí)的概率,

,說(shuō)明這些措施是有效的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,選項(xiàng)正確的是(

A. 在回歸直線中,變量時(shí),變量的值一定是15

B. 兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)就越接近于1

C. 在殘差圖中,殘差點(diǎn)比較均勻落在水平的帶狀區(qū)域中即可說(shuō)明選用的模型比較合適,與帶狀區(qū)域的寬度無(wú)關(guān)

D. 若某商品的銷(xiāo)售量(件)與銷(xiāo)售價(jià)格(元/件)存在線性回歸方程為,當(dāng)銷(xiāo)售價(jià)格為10元時(shí),銷(xiāo)售量為100件左右

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的奇函數(shù)和偶函數(shù)滿(mǎn)足:,下列結(jié)論正確的有(

A.,且

B.,總有

C.,總有

D.,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年某市有2萬(wàn)多文科考生參加高考,除去成績(jī)?yōu)?/span>分(含分)以上的3人與成績(jī)?yōu)?/span>分(不含分)以下的3836人,還有約1.9萬(wàn)文科考生的成績(jī)集中在內(nèi),其成績(jī)的頻率分布如下表所示:

分?jǐn)?shù)段

頻率

0.108

0.133

0.161

0.183

分?jǐn)?shù)段

頻率

0.193

0.154

0.061

0.007

(Ⅰ)試估計(jì)該次高考成績(jī)?cè)?/san>內(nèi)文科考生的平均分(精確到);

(Ⅱ)一考生填報(bào)志愿后,得知另外有4名同分?jǐn)?shù)考生也填報(bào)了該志愿.若該志愿計(jì)劃錄取3人,并在同分?jǐn)?shù)考生中隨機(jī)錄取,求該考生不被該志愿錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人組成星隊(duì)參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ),在一輪活動(dòng)中,如果兩人都猜對(duì),則星隊(duì)3分;如果只有一個(gè)人猜對(duì),則星隊(duì)1分;如果兩人都沒(méi)猜對(duì),則星隊(duì)0分。已知甲每輪猜對(duì)的概率是,乙每輪猜對(duì)的概率是;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響。各輪結(jié)果亦互不影響。假設(shè)星隊(duì)參加兩輪活動(dòng),求:

星隊(duì)至少猜對(duì)3個(gè)成語(yǔ)的概率;

星隊(duì)兩輪得分之和為X的分布列和數(shù)學(xué)期望EX

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某自然資源探險(xiǎn)組織試圖穿越某峽谷,但峽谷內(nèi)被某致命昆蟲(chóng)所侵?jǐn)_,為了穿越這個(gè)峽谷,該探險(xiǎn)組織進(jìn)行了詳細(xì)的調(diào)研,若每平方米的昆蟲(chóng)數(shù)量記為昆蟲(chóng)密度,調(diào)研發(fā)現(xiàn),在這個(gè)峽谷中,昆蟲(chóng)密度是時(shí)間(單位:小時(shí))的一個(gè)連續(xù)不間斷的函數(shù)其函數(shù)表達(dá)式為

其中時(shí)間是午夜零點(diǎn)后的小時(shí)數(shù),為常數(shù).

1)求的值;

2)求出昆蟲(chóng)密度的最小值和出現(xiàn)最小值的時(shí)間;

3)若昆蟲(chóng)密度不超過(guò)1250/平方米,則昆蟲(chóng)的侵?jǐn)_是非致命性的,那么在一天24小時(shí)內(nèi)哪些時(shí)間段,峽谷內(nèi)昆蟲(chóng)出現(xiàn)非致命性的侵?jǐn)_.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓)的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為原點(diǎn),為橢圓的離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)求出函數(shù)的定義域;

2)若當(dāng)時(shí),上恒正,求出的取值范圍;

3)若函數(shù)上單調(diào)遞增,求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二年級(jí)800名學(xué)生參加了地理學(xué)科考試,現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,已知這40名學(xué)生的成績(jī)?nèi)吭?/span>40分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組;第二組……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

1)求每個(gè)學(xué)生的成績(jī)被抽中的概率;

2)估計(jì)這次考試地理成績(jī)的平均分和中位數(shù);

3)估計(jì)這次地理考試全年級(jí)80分以上的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案