如果正實數(shù)a,b滿足ab=ba.且a<1,證明a=b.
分析:這道題可以有三種不同的證明方法.證法一的思路:由a
b=b
a,得blna=alnb,從而
=,考慮函數(shù)
y=(0<x<+∞),它的導數(shù)是
y′=.然后根據(jù)函數(shù)的單調(diào)性用反證法進行證明.
證法二的思路是因為0<a<1,a
b=b
a,所以blog
aa=alog
ab,即
=logab.然后根據(jù)對數(shù)函數(shù)的性質(zhì)用反證法進行證明.
證法三的思路是假如a<b,則可設b=a+ε,其中ε>0由于0<a<1,ε>0,根據(jù)冪函數(shù)或指數(shù)函數(shù)的性質(zhì)用反證法進行證明.
解答:證一:由a
b=b
a,得blna=alnb,從而
=考慮函數(shù)
y=(0<x<+∞),它的導數(shù)是
y′=.因為在(0,1)內(nèi)f'(x)>0,所以f(x)在(0,1)內(nèi)是增函數(shù)
由于0<a<1,b>0,所以a
b<1,從而b
a=a
b<1.由b
a<1及a>0,
可推出b<1.
由0<a<1,0<b<1,假如a≠b,
則根據(jù)f(x)在(0,1)內(nèi)是增函數(shù),
得f(a)≠f(b),即
≠,
從而a
b≠b
a這與a
b=b
a矛盾
所以a=b
證二:因為0<a<1,a
b=b
a,
所以blog
aa=alog
ab,即
=logab假如a<b,則
>1,但因a<1,
根據(jù)對數(shù)函數(shù)的性質(zhì),
得
logab<logaa=1,從而>logab,這與=logab矛盾
所以a不能小于b
假如a>b,則
<1,而log
ab>1,這也與
=logab矛盾
所以a不能大于b,因此a=b
證三:假如a<b,則可設b=a+ε,其中ε>0
由于0<a<1,ε>0,
根據(jù)冪函數(shù)或指數(shù)函數(shù)的性質(zhì),得a
ε<1和
(1+)a>1,
所以
aε<(1+)a,aaaε<aa(1+)a,aa+ε<(a+ε)a,
即a
b<b
a.這與a
b=b
a矛盾,所以a不能小于b
假如b<a,則b<a<1,可設a=b+ε,其中ε>0,同上可證得a
b<b
a.
這于a
b=b
a矛盾,所以a不能大于b
因此a=b
點評:反證法是證明的一種重要方法,一題多證、舉一反三能夠有效地提高我們的證明能力.