已知點(diǎn)P是橢圓
x2
36
+
y2
24
=1(x≠0,y≠0)
上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),O是坐標(biāo)原點(diǎn),若M是∠F1PF2的角平分線上一點(diǎn),且
F1M
MP
=0
,則|OM|的取值范圍是( 。
A.(0,2
3
]
B.(0,2
3
)
C.[2
3
,3
D.[0,4]
由題意得c=2
3
,當(dāng)P在橢圓的短軸頂點(diǎn)處時(shí),M與 O重合,|OM|取得最小值等于0.
當(dāng)P在橢圓的長(zhǎng)軸頂點(diǎn)處時(shí),M與F1重合,|OM|取得最大值等于c=2
3

由于xy≠0,故|OM|的取值范圍是 (0,2
3
)
,
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)A(x1,y1),B(4,
9
5
),C(x2y2)
是右焦點(diǎn)為F的橢圓
x2
25
+
y2
9
=1
上三個(gè)不同的點(diǎn),則“|AF|,|BF|,|CF|成等差數(shù)列”是“x1+x2=8”的( 。
A.充要條件B.必要不充分條件
C.充分不必要條件D.既非充分也非必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓x2+
y2
2
=a2(a>0)
和連接A(1,1)、B(2,3)兩點(diǎn)的線段沒(méi)有公共點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.[0,
6
2
]
B.[
6
2
,
34
2
]
C.[
34
2
,+∞]
D.(0,
6
2
)∪(
34
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)(4,2)是直線l被橢圓
x2
36
+
y2
9
=1
所截得的線段的中點(diǎn),則直線l的斜率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓a2x2+y2=a2(0<a<1)上離頂點(diǎn)A(0,a)最遠(yuǎn)點(diǎn)為(0,-a),則a的取值范圍是( 。
A.0<a<1B.
2
2
≤a<1
C.
2
2
<a<1
D.0<a<
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P是橢圓
x2
16
+
y2
12
=1(y≠0)
上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),O是坐標(biāo)原點(diǎn),若M是∠F1PF2平分線上的一點(diǎn),且F1M⊥MP,則OM的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中,F(xiàn),A,B分別為其左焦點(diǎn),右頂點(diǎn),上頂點(diǎn),O為坐標(biāo)原點(diǎn),M為線段OB的中點(diǎn),若FMA為直角三角形,則該橢圓的離心率為( 。
A.
5
-2
B.
5
-1
2
C.
2
5
5
D.
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知A1,A2為橢圓
x2
4
+y2=1的左右頂點(diǎn),在長(zhǎng)軸A1A2上隨機(jī)任取點(diǎn)M,過(guò)M作垂直于x軸的直線交橢圓于點(diǎn)P,則使∠PA1A2<45°的概率為( 。
A.
4
5
B.
7
10
C.
3
10
D.
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)P是橢圓
x2
9
+
y2
4
=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是焦點(diǎn),且∠F1PF2=60°,則△F1PF2的面積是( 。
A.
4
3
3
B.4
3
C.
4
3
D.
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案