(1)子集的定義:對(duì)于兩個(gè)集合AB,如果集合A的任意一個(gè)元素都是集合B的元素,我們就說集合A     集合B,或集合B     集合A,也可以說集合A是集合B的子集.記作          ,如果集合A不包含于集合B,或集合B不包含集合A,就記作     .?

規(guī)定:空集是任何集合的子集, .?

如果AB,并且AB,稱集合A是集合B的,記作     .?

(2)交集的定義:一般地,由屬于集合A     屬于集合B的元素所組成的集合,叫做AB的交集.記作     (讀作“AB”),即AB={x|xAxB}.?

(3)并集的定義:一般地,由屬于集合A     屬于集合B的元素所組成的集合,叫做A、B的并集.記作     (讀作“AB”),即AB={x|xAxB}).?

(4)補(bǔ)集的定義:一般地,設(shè)S是一個(gè)集合,AS的一個(gè)子集,由S中所有     A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集),記作     ,.?

 

(1)包含于 包含 AB BA AB 真子集 AB 

(2)且 A∩B 

(3)或 A∪B 

(4)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
(1)等比數(shù)列的前n項(xiàng)和可能為零;
(2)對(duì)k∈R,直線y-kx-1=0與橢圓
x2
5
+
y2
m
=1
恒有公共點(diǎn),實(shí)數(shù)m的取值范圍是m≥1
(3)向量
a
=(x2,x+1)
,
b
=(1-x,t)
,若函數(shù)f(x)=
a
-
b
在區(qū)間上是增函數(shù),則實(shí)數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個(gè).
其中正確的命題有
 
(填番號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2005•金山區(qū)一模)對(duì)于集合N={1,2,3,…,n}的每一個(gè)非空子集,定義一個(gè)“交替和”如下:按照遞減的次序重新排列該子集,然后從最大數(shù)開始交替地減、加后繼的數(shù).例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和為5.當(dāng)集合N中的n=2時(shí),集合N={1,2}的所有非空子集為{1},{2},{1,2},則它的“交替和”的總和S2=1+2+(2-1)=4,請(qǐng)你嘗試對(duì)n=3、n=4的情況,計(jì)算它的“交替和”的總和S3、S4,并根據(jù)其結(jié)果猜測(cè)集合N={1,2,3,…,n}的每一個(gè)非空子集的“交替和”的總和Sn=
n•2n-1
n•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市高考數(shù)學(xué)模擬試卷1(理科)(解析版) 題型:解答題

對(duì)于集合N={1,2,3,…,n}的每一個(gè)非空子集,定義一個(gè)“交替和”如下:按照遞減的次序重新排列該子集,然后從最大數(shù)開始交替地減、加后繼的數(shù).例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和為5.當(dāng)集合N中的n=2時(shí),集合N={1,2}的所有非空子集為{1},{2},{1,2},則它的“交替和”的總和S2=1+2+(2-1)=4,請(qǐng)你嘗試對(duì)n=3、n=4的情況,計(jì)算它的“交替和”的總和S3、S4,并根據(jù)其結(jié)果猜測(cè)集合N={1,2,3,…,n}的每一個(gè)非空子集的“交替和”的總和Sn=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年上海市金山區(qū)高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

對(duì)于集合N={1,2,3,…,n}的每一個(gè)非空子集,定義一個(gè)“交替和”如下:按照遞減的次序重新排列該子集,然后從最大數(shù)開始交替地減、加后繼的數(shù).例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和為5.當(dāng)集合N中的n=2時(shí),集合N={1,2}的所有非空子集為{1},{2},{1,2},則它的“交替和”的總和S2=1+2+(2-1)=4,請(qǐng)你嘗試對(duì)n=3、n=4的情況,計(jì)算它的“交替和”的總和S3、S4,并根據(jù)其結(jié)果猜測(cè)集合N={1,2,3,…,n}的每一個(gè)非空子集的“交替和”的總和Sn=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省成都九中高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

給出下列四個(gè)命題:
(1)等比數(shù)列的前n項(xiàng)和可能為零;
(2)對(duì)k∈R,直線y-kx-1=0與橢圓恒有公共點(diǎn),實(shí)數(shù)m的取值范圍是m≥1
(3)向量,,若函數(shù)f(x)=在區(qū)間上是增函數(shù),則實(shí)數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個(gè).
其中正確的命題有    (填番號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案