【題目】設n是正整數(shù),r為正有理數(shù).
(1)求函數(shù)f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;
(參考數(shù)據(jù): .
(2)證明: ;
(3)設x∈R,記[x]為不小于x的最小整數(shù),例如 .令 的值.
【答案】
(1)
解:由題意得f'(x)=(r+1)(1+x)r﹣(r+1)=(r+1)[(1+x)r﹣1],
令f'(x)=0,解得x=0.
當﹣1<x<0時,f'(x)<0,∴f(x)在(﹣1,0)內(nèi)是減函數(shù);
當x>0時,f'(x)>0,∴f(x)在(0,+∞)內(nèi)是增函數(shù).
故函數(shù)f(x)在x=0處,取得最小值為f(0)=0.
(2)
證明:由(1),當x∈(﹣1,+∞)時,有f(x)≥f(0)=0,
即(1+x)r+1≥1+(r+1)x,且等號當且僅當x=0時成立,
故當x>﹣1且x≠0,有(1+x)r+1>1+(r+1)x,①
在①中,令 (這時x>﹣1且x≠0),得 .
上式兩邊同乘nr+1,得(n+1)r+1>nr+1+nr(r+1),
即 ,②
當n>1時,在①中令 (這時x>﹣1且x≠0),
類似可得 ,③
且當n=1時,③也成立.
綜合②,③得 ,④
(3)
解:在④中,令 ,n分別取值81,82,83,…,125,
得 , , ,… ,
將以上各式相加,并整理得 .
代入數(shù)據(jù)計算,可得
由[S]的定義,得[S]=211.
【解析】(1)先求出函數(shù)f(x)的導函數(shù)f′(x),令f'(x)=0,解得x=0,再求出函數(shù)的單調區(qū)間,進而求出最小值為f(0)=0;(2)根據(jù)(1)知,即(1+x)r+1≥1+(r+1)x,令 代入并化簡得 ,再令 得, ,即結論得到證明;(3)根據(jù)(Ⅱ)的結論,令 ,n分別取值81,82,83,…,125,分別列出不等式,再將各式相加得, ,再由參考數(shù)據(jù)和條件進行求解.
【考點精析】根據(jù)題目的已知條件,利用利用導數(shù)研究函數(shù)的單調性和數(shù)列的前n項和的相關知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減;數(shù)列{an}的前n項和sn與通項an的關系.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中)的圖象如圖所示:
(1)求函數(shù)的解析式及其對稱軸的方程;
(2)當時,方程有兩個不等的實根,求實數(shù)的取值范圍,并求此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)用180萬元購買一套新設備,該套設備預計平均每年能給企業(yè)帶來100萬元的收入,為了維護設備的正常運行,第一年需要各種維護費用10萬元,且從第二年開始,每年比上一年所需的維護費用要增加10萬元
(1)求該設備給企業(yè)帶來的總利潤(萬元)與使用年數(shù)的函數(shù)關系;
(2)試計算這套設備使用多少年,可使年平均利潤最大?年平均利潤最大為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}滿足:|a2﹣a3|=10,a1a2a3=125.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)m,使得 ?若存在,求m的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定區(qū)域D: .令點集T={(x0 , y0)∈D|x0 , y0∈Z,(x0 , y0)是z=x+y在D上取得最大值或最小值的點},則T中的點共確定條不同的直線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔仔細算相還”,其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,則該人第五天走的路程為( )
A. 6里B. 12里C. 24里D. 48里
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,為測得河對岸塔的高,先在河岸上選一點,使在塔底的正東方向上,測得點的仰角為60°,再由點沿北偏東15°方向走到位置,測得,則塔的高是(單位:)( )
A. B. C. D. 10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象如圖所示,則下列說法正確的是( )
A. 函數(shù)的周期為
B. 函數(shù)在上單調遞增
C. 函數(shù)的圖象關于點對稱
D. 把函數(shù)的圖象向右平移個單位,所得圖象對應的函數(shù)為奇函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com