已知圓M: ,直線,上一點(diǎn)A的橫坐標(biāo)為,過點(diǎn)A作圓M的兩條切線,,切點(diǎn)分別為B,C.
(1)當(dāng)時,求直線,的方程;
(2)當(dāng)直線,互相垂直時,求的值;
(3)是否存在點(diǎn)A,使得?若存在,求出點(diǎn)A的坐標(biāo),若不存在,請說明理由.
(1)直線l1,l2的方程為;(2);(3)點(diǎn)A不存在.
解析試題分析:(1)設(shè)出切線方程,根據(jù)圓心到直線的距離等于半徑求得直線的斜率,即可得出直線,的方程;
(2)當(dāng)直線,互相垂直時,由正方形可知,根據(jù)兩點(diǎn)間的距離公式求解;
(3)設(shè),可得,利用圓心M到直線的距離是,即可得出結(jié)論.
試題解析:(1)∵圓M:,
∴,
由此可知圓心,半徑,
∵直線
,上一點(diǎn)A的橫坐標(biāo)為,且,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓心坐標(biāo)為的圓與軸及直線均相切,切點(diǎn)分別為、,另一圓與圓、軸及直線均相切,切點(diǎn)分別為、。
(1)求圓和圓的方程;
(2)過點(diǎn)作的平行線,求直線被圓截得的弦的長度;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓A:x2+y2-2x-2y-2=0.
(1)若直線l:ax+by-4=0平分圓A的周長,求原點(diǎn)O到直線l的距離的最大值;
(2)若圓B平分圓A的周長,圓心B在直線y=2x上,求符合條件且半徑最小的圓B的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C經(jīng)過點(diǎn)A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(1)求圓C的方程;
(2)過點(diǎn)(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點(diǎn),求四邊形PMQN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:,直線L:.
(1)求證:對直線L與圓C總有兩個不同交點(diǎn);
(2)設(shè)L與圓C交于不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
(3)若定點(diǎn)P(1,1)分弦AB所得向量滿足,求此時直線L的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
過單位圓是位于第一象限的任意一點(diǎn)作圓的切線,則該切線與兩坐標(biāo)軸所圍成的三角形面積的最小值是___________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com