已知正項數(shù)列{an},其前n項和Sn滿足6Sn+3an+2,且a1a2a6是等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記Tna1bna2bn-1+…+anb1,n∈N*,證明:3Tn+1=2bn+1an+1(n∈N*).

(1)an=3n-2,bn=4n-1(2)見解析

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(2013•湖北)已知Sn是等比數(shù)列{an}的前n項和,S4,S2,S3成等差數(shù)列,且a2+a3+a4=﹣18.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)n,使得Sn≥2013?若存在,求出符合條件的所有n的集合;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的各項均滿足,,
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的通項公式是,前項和為,求證:對于任意的正數(shù),總有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn,數(shù)列{Sn}的前n項和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}的前n項和Snn2(n∈N*),等比數(shù)列{bn}滿足b1a1,2b3b4.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若cnan·bn(n∈N*),求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知各項均為正數(shù)的等比數(shù)列{an}的首項a1=2,Sn為其前n項和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log2an,cn,記數(shù)列{cn}的前n項和Tn.若對?n∈N*,Tn≤k(n+4)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列{an}滿足:a1=1,an+1=3an+2n+1(n∈N*),求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn,數(shù)列{Sn}的前n項和為Tn,滿足Tn=2Snn2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),設(shè)曲線在點處的切線與軸的交點為,其中為正實數(shù).
(1)用表示;
(2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;
(3)若數(shù)列的前項和,記數(shù)列的前項和,求

查看答案和解析>>

同步練習冊答案