【題目】某中學(xué)對高二甲、乙兩個(gè)同類班級進(jìn)行“加強(qiáng)‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率有幫助”的試驗(yàn),其中甲班為試驗(yàn)班(加強(qiáng)語文閱讀理解訓(xùn)練),乙班為對比班(常規(guī)教學(xué),無額外訓(xùn)練),在試驗(yàn)前的測試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗(yàn)結(jié)束后,統(tǒng)計(jì)幾次數(shù)學(xué)應(yīng)用題測試的平均成績(均取整數(shù))如下表所示:
60分及以下 | 61~70分 | 71~80分 | 81~90分 | 91~100分 | |
甲班(人數(shù)) | 3 | 6 | 12 | 15 | 9 |
乙班(人數(shù)) | 4 | 7 | 16 | 12 | 6 |
現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫列聯(lián)表,并判斷是否有的把握認(rèn)為“加強(qiáng)‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率”有幫助;
(2)對甲乙兩班60分及以下的同學(xué)進(jìn)行定期輔導(dǎo),一個(gè)月后從中抽取3人課堂檢測,表示抽取到的甲班學(xué)生人數(shù),求及至少抽到甲班1名同學(xué)的概率.
【答案】(1)見解析;(2).
【解析】
(1)根據(jù)題意得到列聯(lián)表,然后由列聯(lián)表中的數(shù)據(jù)得到的值,再結(jié)合臨界值表可得結(jié)論.(2)由題意得到隨機(jī)變量的所有可能取值,并分別求出對應(yīng)的概率,進(jìn)而得到的分布列,于是可得所求.
(1)由題意可得列聯(lián)表如下:
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | 21 | 24 | 45 |
乙班 | 27 | 18 | 45 |
合計(jì) | 48 | 42 | 90 |
由表中數(shù)據(jù)可得,
所以沒有95%的把握認(rèn)為“加強(qiáng)‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率”有幫助.
(2)由題意得60分以下共有7人,其中甲班有3人,所以隨機(jī)變量顯然的所有可能取值為.
,,,,
所以隨機(jī)變量的分布列為
0 | 1 | 2 | 3 | |
所以,
至少抽到1名甲班學(xué)生概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,恒成立,求的取值范圍;
(2)若,是否存在實(shí)數(shù),使得,都成立?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)和,若存在區(qū)間,使在區(qū)間上恒成立,則稱區(qū)間是函數(shù)和的“公共鄰域”.設(shè)函數(shù)的反函數(shù)為,函數(shù)的圖像與函數(shù)的圖像關(guān)于點(diǎn)對稱.
(1)求函數(shù)和的解析式;
(2)若,求函數(shù)的定義域;
(3)是否存在實(shí)數(shù),使得區(qū)間是和的“公共鄰域”,若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)f(x)的定義域,判斷并證明函數(shù)f(x)的奇偶性;
(Ⅱ)是否存在這樣的實(shí)數(shù)k,使f(k-x2)+f(2k-x4)≥0對一切恒成立,若存在,試求出k的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足(為常數(shù)),且=3.
(1)求實(shí)數(shù)的值,并求出函數(shù)的解析式;
(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性,并用定義證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新個(gè)稅法于2019年1月1日進(jìn)行實(shí)施.為了調(diào)查國企員工對新個(gè)稅法的滿意程度,研究人員在地各個(gè)國企中隨機(jī)抽取了1000名員工進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中.
(1)求的值并估計(jì)被調(diào)查的員工的滿意程度的中位數(shù);(計(jì)算結(jié)果保留兩位小數(shù))
(2)若按照分層抽樣從,中隨機(jī)抽取8人,再從這8人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形理論是當(dāng)今世界十分風(fēng)靡和活躍的新理論、新學(xué)科。其中,把部分與整體以某種方式相似的形體稱為分形。分形是一種具有自相似特性的現(xiàn)象,圖象或者物理過程。標(biāo)準(zhǔn)的自相似分形是數(shù)學(xué)上的抽象,迭代生成無限精細(xì)的結(jié)構(gòu)。也就是說,在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出的,按照如下規(guī)律依次在一個(gè)黑色三角形內(nèi)去掉小三角形則當(dāng)時(shí),該黑色三角形內(nèi)共去掉( )個(gè)小三角形
A. 81 B. 121 C. 364 D. 1093
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,雙十一購物狂歡節(jié)(簡稱“雙11”)活動已成為中國電子商務(wù)行業(yè)年度盛事,某網(wǎng)絡(luò)商家為制定2018年“雙11”活動營銷策略,調(diào)查了2017年“雙11”活動期間每位網(wǎng)購客戶用于網(wǎng)購時(shí)間(單位:小時(shí)),發(fā)現(xiàn)近似服從正態(tài)分布.
(1)求的估計(jì)值;
(2)該商家隨機(jī)抽取參與2017年“雙11”活動的10000名網(wǎng)購客戶,這10000名客戶在2017年“雙11”活動期間,用于網(wǎng)購時(shí)間屬于區(qū)間的客戶數(shù)為.該商家計(jì)劃在2018年“雙11”活動前對這名客戶發(fā)送廣告,所發(fā)廣告的費(fèi)用為每位客戶0.05元.
(i)求該商家所發(fā)廣告總費(fèi)用的平均估計(jì)值;
(ii)求使取最大值時(shí)的整數(shù)的值.
附:若隨機(jī)變量服從正態(tài)分布,則,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知常數(shù),函數(shù).
(1)討論在區(qū)間上的單調(diào)性;
(2)若存在兩個(gè)極值點(diǎn),且,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com