如圖,在平面四邊形ABCD中,AB=AD=1,∠BAD=θ;而△BCD是正三角形.

(Ⅰ)將四邊形ABCD面積S表示為θ的函數(shù);

(Ⅱ)求S的最大值及此時θ角的值.

解:(Ⅰ)△ABD的面積

S=|AB|·IADI·sinA=·1·1sinθ=sinθ

∵△BDC是正三角形,則△BDC面積為BD2

而由△ABD及余弦定理可知:

BD2=12+12-2·1·1·cosθ=2-2cosθ

于是四邊形ABCD面積S=sinθ+(2-2cosθ)

S=+sin(θ-)其中0<θ<π

(Ⅱ)由S=+sin(θ-)及0<θ<π

則-<θ-

在θ-=時, S取得最大值1+

此時θ=+=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面四邊形ABCD中,若AB=2,CD=1,則(
AC
+
DB
)•(
AB
+
CD
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC,設(shè)點F為棱AD的中點.
(1)求證:DC⊥平面ABC;
(2)求直線BF與平面ACD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面四邊形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿對角線AC將此四邊形折成直二面角.
(1)求證:AB⊥平面BCD
(2)求三棱錐D-ABC的體積
(3)求點C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面四邊形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿對角線AC將此四邊形折成直二面角.
(1)求證:AB⊥平面BCD
(2)求三棱錐D-ABC的體積
(3)求點C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC,設(shè)點F為棱AD的中點.
(1)求證:DC⊥平面ABC;
(2)求直線BF與平面ACD所成角的余弦值.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案