甲乙兩人玩猜數(shù)字游戲,先由甲心中想一個數(shù)字,記為a,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為b,其中a,b∈{1,2,3,4,5,6},若a=b或a=b-1,就稱甲乙“心有靈犀”現(xiàn)在任意找兩人玩這個游戲,則他們“心有靈犀”的概率為( 。
A、
7
36
B、
1
4
C、
11
36
D、
5
12
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:本題是一個古典概型,試驗包含的所有事件是任意找兩人玩這個游戲,其中滿足條件的滿足|a-b|≤1的情形包括6種,列舉出所有結(jié)果,根據(jù)計數(shù)原理得到共有的事件數(shù),根據(jù)古典概型概率公式得到結(jié)果.
解答: 解:由題意知本題是一個古典概型,
∵試驗包含的所有事件是任意找兩人玩這個游戲,共有6×6=36種猜字結(jié)果,
其中滿足a=b的情形有6種;
滿足a=b-1的有以下情形:
①若a=1,則b=2;
②若a=2,則b=3;
③若a=3,則b=4;
④若a=4,則b=5;
⑤若a=5,則b=6,
總共11種,
∴“心有靈犀”的概率為
11
36

故選:C.
點評:本題是古典概型問題,屬于高考新增內(nèi)容,解本題的關(guān)鍵是準確的分類,得到他們“心有靈犀”的各種情形.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

33(4)轉(zhuǎn)化為二進制的數(shù)為(  )
A、1101(2)
B、1111(2)
C、1011(2)
D、1001(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若全集U={1,2,3,4,5,6},M={2,3},N={1,4},則集合{5,6}等于( 。
A、M∪N
B、M∩N
C、(∁UM)∪(∁UN)
D、(∁UM)∩(∁UN)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在鈍角三角形ABC中,若B=45°,a=
2
,則邊長c的取值范圍是( 。
A、(1,
2
B、(0,1)∪(
2
,+∞)
C、(1,2)
D、(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
,
b
,
c
兩兩所成的角相等,且|
a
|=|
b
|=|
c
|=1,則|
a
+
b
+
c
|=( 。
A、0
B、3
C、3或 0
D、1或
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算由曲線y=
1
3
x2,y=x所圍成的平面圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y=
1
2
x2將圓面x2+y2≤8分成兩部分,現(xiàn)在向圓面上均勻投點,這些點落在圖中陰影部分的概率為
1
4
+
1
,求
2
0
8-x2
-
1
2
x2)dx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

-
π
2
<x<0,sinx+cosx=
1
5
,
(1)求sinxcosx的值;
(2)求sinx-cosx的值;
(3)求tanx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設(shè)AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F(xiàn)兩點,連接AE,AF結(jié)分別與CD交于G,H.
(Ⅰ)設(shè)EF中點為C1,求證:O,C1,B,P四點共圓;
(Ⅱ)求證:OG=OH.

查看答案和解析>>

同步練習冊答案