【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C (ab>0)的離心率為且過點(1,).過橢圓C的左頂點A作直線交橢圓C于另一點P,交直線lxm(ma)于點M.已知點B(1,0),直線PBl于點N

(Ⅰ)求橢圓C的方程;

(Ⅱ)若MB是線段PN的垂直平分線,求實數(shù)m的值.

【答案】(1)y2=1(2)

【解析】試題分析:(1)根據(jù)題意列出關(guān)于 、 、的方程組,結(jié)合性質(zhì) ,求出 、,即可得結(jié)果;(2)設(shè),則,所以.可得直線的方程為,根據(jù)可得,解方程即可得結(jié)果.

試題解析:(1)因為橢圓C的離心率為,所以a2=4b2

又因為橢圓C過點(1,),所以=1,

解得a2=4,b2=1.

所以橢圓C的方程為y2=1.

(2)解法1

設(shè)P(x0y0),-2<x0<2, x0≠1,則y02=1.

因為MBPN的垂直平分線,所以P關(guān)于B的對稱點N(2-x0,-y0),

所以2-x0m

A(-2,0),P(x0,y0),可得直線AP的方程為y (x+2),

xm,得y,即M(m).

因為PBMB,所以kPB·kMB=-1,

所以kPB·kMB·=-1,

=-1.

因為y02=1.所以=1.

因為x0=2-m ,所以化簡得3m2-10m+4=0,

解得m

因為m>2,所以m

解法2

①當(dāng)AP的斜率不存在或為0時,不滿足條件.

②設(shè)AP斜率為k,則APyk(x+2),

聯(lián)立消去y得(4k2+1)x2+16k2x+16k2-4=0.

因為xA=-2,所以xP,所以yP,

所以P(,).

因為PN的中點為B,所以m=2-.(*)

因為AP交直線l于點M,所以M(m,k(m+2)),

因為直線PBx軸不垂直,所以≠1,即k2,

所以kPB,kMB

因為PBMB,所以kPB·kMB=-1,

所以·=-1.(**)

將(*)代入(**),化簡得48k4-32k2+1=0,

解得k2,所以m

又因為m>2,所以m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|m+1≤x≤2m﹣1},B={x|x<﹣2或x>5}
(1)若AB,求實數(shù)m的取值范圍的集合;
(2)若A∩B=,求實數(shù)m的取值范圍的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為3萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)= ,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)甲廠生產(chǎn)多少臺新產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A=[2,log2t],集合B={x|y= },
(1)對于區(qū)間[a,b],定義此區(qū)間的“長度”為b﹣a,若A的區(qū)間“長度”為3,試求實數(shù)t的值.
(2)若AB,試求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個,分別編號為1,2,3,4.現(xiàn)從袋中隨機(jī)取兩個球.

(Ⅰ)若兩個球顏色不同,求不同取法的種數(shù);

(Ⅱ)在(1)的條件下,記兩球編號的差的絕對值為隨機(jī)變量X,求隨機(jī)變量X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為ab,c,cosB

(Ⅰ)若c=2a,求的值;

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯誤的是(
A.命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2≠0”
B.若p∧q為假命題,則p,q均為假命題
C.對命題P:存在x∈R,使得x2+x+1<0,則¬p為:任意x∈R,均有x2+x+1≥0
D.“x>2”是“x2﹣3x+2>0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿12分) 已知集合在平面直角坐標(biāo)系中,點M的坐標(biāo)為(x,y) ,其中。

1)求點M不在x軸上的概率;

2)求點M正好落在區(qū)域上的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點A(﹣ ),離心率為 ,點F1 , F2分別為其左右焦點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若y2=4x上存在兩個點M,N,橢圓上有兩個點P,Q滿足,M,N,F(xiàn)2三點共線,P,Q,F(xiàn)2三點共線,且PQ⊥MN.求四邊形PMQN面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案