【題目】已知奇函數(shù).

1)求實(shí)數(shù)的值,并畫出函數(shù)的圖象;

2)若函數(shù)在區(qū)間上是增函數(shù),結(jié)合函數(shù)的圖象,求實(shí)數(shù)的取值范圍;

3)結(jié)合圖象,求函數(shù)在區(qū)間上的最大值和最小值.

【答案】(1) m=2. (2) (1,3].(3)最大值是1,最小值是-1.

【解析】

試題(1)根據(jù)奇函數(shù)定義得f(-x)=-f(x)代入可得m=2通過(guò)描點(diǎn)可得函數(shù)f(x)的圖象;(2)根據(jù)圖像可得[-1,a-2]為[-1,1]一個(gè)子集,結(jié)合數(shù)軸可得實(shí)數(shù)a滿足的條件,解不等式可得a的取值范圍(3)根據(jù)圖像可得最高點(diǎn)與最低點(diǎn),對(duì)應(yīng)求出最大值和最小值.

試題解析:解:(1)當(dāng)x<0時(shí),-x>0,

f(-x)=-(-x)2+2(-x)=-x2-2x.

又∵函數(shù)f(x)為奇函數(shù),

f(-x)=-f(x).

f(x)=-f(-x)=-(-x2-2x)=x2+2x.

又∵當(dāng)x<0時(shí),f(x)=x2mx,

∵對(duì)任意x<0,總有x2+2xx2mx,∴m=2.

函數(shù)f(x)的圖象如圖所示.

(2)由(1)知f(x)=

由圖象可知,函數(shù)f(x)的圖象在區(qū)間[-1,1]上的圖象是“上升的”,

∴函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù).

要使f(x)在[-1,a-2]上是增函數(shù),

需有解得1<a≤3,

即實(shí)數(shù)a的取值范圍是(1,3].

(3)由圖象可知,函數(shù)f(x)的圖象在區(qū)間[-2,2]上的最高點(diǎn)是(1,f(1)),最低點(diǎn)是(-1,f(-1)).

又因?yàn)?/span>f(1)=-1+2=1,f(-1)=1-2=-1,所以函數(shù)f(x)在區(qū)間[-2,2]上的最大值是1,最小值是-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四棱錐中,底面是梯形,ABCD,AB=PD=4,CD=2,MCD的中點(diǎn),NPB上一點(diǎn),且.

(1)若MN∥平面PAD;

(2)若直線AN與平面PBC所成角的正弦值為,求異面直線AD與直線CN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,四邊形

為矩形,平面平面,.

I)求證:平面;

II)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,

試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)的連線構(gòu)成等腰直角三角形.

Ⅰ)求橢圓的方程;

Ⅱ)過(guò)的直線交橢圓于,兩點(diǎn),試問(wèn):是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)將甲、乙、丙、丁四個(gè)人安排到座位號(hào)分別是的四個(gè)座位上,他們分別有以下要求,

甲:我不坐座位號(hào)為的座位;

乙:我不坐座位號(hào)為的座位;

丙:我的要求和乙一樣;

。喝绻也蛔惶(hào)為的座位,我就不坐座位號(hào)為的座位.

那么坐在座位號(hào)為的座位上的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假定生男孩和生女孩是等可能的,令{一個(gè)家庭中既有男孩又有女孩},{一個(gè)家庭中最多有一個(gè)女孩}.對(duì)下述兩種情形,討論的獨(dú)立性.

1)家庭中有兩個(gè)小孩;

2)家庭中有三個(gè)小孩.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某中學(xué)聯(lián)盟舉行了一次盟校質(zhì)量調(diào)研考試活動(dòng),為了解本次考試學(xué)生的某學(xué)科成績(jī)情況,從中抽取部分學(xué)生的分?jǐn)?shù)(滿分為分,得分取正整數(shù),抽取學(xué)生的分?jǐn)?shù)均在之內(nèi))作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì),按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(莖葉圖中僅列出了得分在的數(shù)據(jù))

(Ⅰ)求樣本容量和頻率分布直方圖中的的值;

(Ⅱ)在選取的樣本中,從成績(jī)?cè)?/span>分以上(含分)的學(xué)生中隨機(jī)抽取名學(xué)生參加省級(jí)學(xué)科基礎(chǔ)知識(shí)競(jìng)賽,求所抽取的名學(xué)生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高爾頓(釘)板是在一塊豎起的木板上釘上一排排互相平行、水平間隔相等的圓柱形鐵釘(如圖),并且每一排釘子數(shù)目都比上一排多一個(gè),一排中各個(gè)釘子恰好對(duì)準(zhǔn)上面一排兩相鄰鐵釘?shù)恼醒?從入口處放入一個(gè)直徑略小于兩顆釘子間隔的小球,當(dāng)小球從兩釘之間的間隙下落時(shí),由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過(guò)兩鐵釘?shù)拈g隙,又碰到下一排鐵釘.如此繼續(xù)下去,在最底層的5個(gè)出口處各放置一個(gè)容器接住小球.

(Ⅰ)理論上,小球落入4號(hào)容器的概率是多少?

(Ⅱ)一數(shù)學(xué)興趣小組取3個(gè)小球進(jìn)行試驗(yàn),設(shè)其中落入4號(hào)容器的小球個(gè)數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問(wèn)題擬定出臺(tái)“延遲退休年齡政策”.為了了解人們]對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在1565歲的人群中隨機(jī)調(diào)查100人,調(diào)査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下

年齡

支持“延遲退休”的人數(shù)

15

5

15

28

17

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;

45歲以下

45歲以上

總計(jì)

支持

不支持

/td>

總計(jì)

(2)若以45歲為分界點(diǎn)從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人

①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.

②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案