某射手進(jìn)行射擊訓(xùn)練,假設(shè)每次射擊擊中目標(biāo)的概率為
3
5
,且每次射擊的結(jié)果互不影響,已知射手射擊了5次,求:
(1)其中只在第一、三、五次擊中目標(biāo)的概率;
(2)其中恰有3次擊中目標(biāo)的概率.
考點(diǎn):n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)該射手射擊了5次,其中只在第一、三、五次擊中目標(biāo),是在確定的情況下?lián)糁心繕?biāo)3次,也即在第二、四次沒有擊中目標(biāo),所以只有一種情況,又各次射擊的結(jié)果互不影響,故可求只在第一、三、五次擊中目標(biāo)的概率;
(2)該射手射擊了5次,其中恰有3次擊中目標(biāo),符合獨(dú)立重復(fù)試驗(yàn)概率模型,故可求其中恰有3次擊中目標(biāo)的概率.
解答: 解:(1)該射手射擊了5次,其中只在第一、三、五次擊中目標(biāo),是在確定的情況下?lián)糁心繕?biāo)3次,也即在第二、四次沒有擊中目標(biāo),所以只有一種情況,又各次射擊的結(jié)果互不影響,
故所求其概率為P1=
3
5
•(1-
3
5
)•
3
5
•(1-
3
5
)•
3
5
=
108
3125

(2)該射手射擊了5次,其中恰有3次擊中目標(biāo),符合獨(dú)立重復(fù)試驗(yàn)概率模型,
故所求其概率為P2=
C
3
5
3
5
3•(1-
3
5
2=
216
625
點(diǎn)評:本題主要考查n次獨(dú)立重復(fù)實(shí)驗(yàn)中恰好發(fā)生k次的概率,等可能事件的概率,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A′B′C′中,底面是以角∠ABC為直角的等腰直角三角形,AC=2a,BB′=3a,D是A′C′的中點(diǎn).
(1)證明:A′B∥平面B′CD;
(2)在側(cè)棱AA′上是否存在點(diǎn)E,使CE⊥平面B′D E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個組合體的三視圖(單位:cm),
(1)此組合體是由上下兩個幾何體組成,試說出上下兩個幾何體的名稱,并用斜二測畫法畫出下半部分幾何體的直觀圖;
(2)求這個組合體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=2cosθ
y=3sinθ
(θ為參數(shù))在同一平面直角坐標(biāo)系中,將曲線C上的點(diǎn)按坐標(biāo)變換
x′=
1
2
x
y′=
1
3
y
得到曲線C′.
(1)求曲線C′的普通方程.
(2)若點(diǎn)A在曲線C′上,點(diǎn)B(3,0).當(dāng)點(diǎn)A在曲線C′上運(yùn)動時,求AB中點(diǎn)P的運(yùn)動軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(-x2+2x+3),求該函數(shù)的定義域和值域,并指出其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi)A,B,C三點(diǎn)對應(yīng)的復(fù)數(shù)分別為1,2+i,-1+2i.
(1)求
AB
,
BC
,
AC
對應(yīng)的復(fù)數(shù);
(2)判斷△ABC的形狀;
(3)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若|
a
|=|
b
|=|
a
+
b
|=1,則向量
a
、
b
的夾角等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(x,-1),
b
=(1,
1
x
),則不等式
a
b
≤0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2x2-4x+3,則f(x+1)=
 

查看答案和解析>>

同步練習(xí)冊答案