【題目】已知正項(xiàng)等比數(shù)列{an}(nN*),首項(xiàng)a13,前n項(xiàng)和為Sn,且S3a3、S5a5S4a4成等差數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意正整數(shù)n,都有Tn[a,b],求ba的最小值.

【答案】(1)an3×()n1.(2)9.

【解析】試題分析:(1)設(shè)等比數(shù)列{an}的公比為q,由題意,列成方程,求解 ,即可求解數(shù)列的通項(xiàng)公式;

(2)由(1)知nan=3n×,用乘公比錯(cuò)位相減法求的Tn,根據(jù)Tn的增減性,求解3≤Tn<12,即可求解ba的最小值.

試題解析:(1)設(shè)等比數(shù)列{an}的公比為q,

S3a3S5a5、S4a4成等差數(shù)列,

∴有2(S5a5)=(S3a3)+(S4a4)

即2(a1a2a3a4+2a5)=(a1a2+2a3)+(a1a2a3+2a4),

化簡(jiǎn)得4a5a3,從而4q2=1,解得q=±

an>0,∴q,得an=3×()n-1.

(2)由(1)知,nan=3n×()n-1,Tn=3×1+3×2×()+3×3×()2+…+3n()n-1;

Tn=3×1×()+3×2×()2+…+3(n-1)×()n-1+3n()n

兩式相減得:Tn=3×1+3×()+3×()2+…+3×()n-1-3n()n

=3×-3n()n=6-,

Tn=12-<12.

nan=3n×()n-1>0,∴{Tn}單調(diào)遞增,

∴(Tn)minT1=3,故有3≤Tn<12.

∵對(duì)任意正整數(shù)n,都有Tn∈[ab],

a≤3,b≥12.

a的最大值為3,b的最小值為12.

故(ba)min1239.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,是橢圓的右焦點(diǎn),直線的斜率為為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn).當(dāng)的面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)閇﹣1,1],圖象如圖1所示;函數(shù)g(x)的定義域?yàn)閇﹣2,2],圖象如圖2所示,設(shè)函數(shù)f(g(x))有m個(gè)零點(diǎn),函數(shù)g(f(x))有n個(gè)零點(diǎn),則m+n等于( 。

A. 6 B. 10 C. 8 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京大學(xué)從參加逐夢(mèng)計(jì)劃自主招生考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組 , 后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

1)求分?jǐn)?shù)在內(nèi)的頻率;

2)估計(jì)本次考試成績(jī)的中位數(shù)(結(jié)果四舍五入,保留整數(shù));

3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有人在分?jǐn)?shù)段內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形為菱形,對(duì)角線的交點(diǎn)為,四邊形為梯形, .

(Ⅰ)若,求證: 平面;

(Ⅱ)求證:平面平面

(Ⅲ)若, , ,求與平面所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面為直角梯形, 平面,側(cè)面是等腰直角三角形, , ,點(diǎn)是棱的中點(diǎn).

(1)證明:平面平面;

(2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中, 的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,三個(gè)內(nèi)角滿足.

(1)若頂點(diǎn)的軌跡為,求曲線的方程;

(2)若點(diǎn)為曲線上的一點(diǎn),過點(diǎn)作曲線的切線交圓于不同的兩點(diǎn)(其中的右側(cè)),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù)

(1)若,求的取值范圍;

(2)討論的單調(diào)性;

(3)當(dāng)時(shí),討論在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為,過點(diǎn)軸垂直的直線交橢圓兩點(diǎn), 的面積為,橢圓的離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與橢圓交于兩個(gè)不同的點(diǎn),若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案