精英家教網 > 高中數學 > 題目詳情
已知⊙的半徑是, 它的內接三角形中, 有成立,求角的大小及三角形面積的最大值.
C=    (S△ABCmax =
本題主要考查了余弦定理和正弦定理的應用.正弦定理和余弦定理及其變形公式是解三角形問題中常用的公式,故應熟練記憶
利用正弦定理把題設等式中的角的正弦轉化成邊,化簡整理求得a,b和c的關系,繼而代入余弦定理cosC中求得cosC的值,利用同角三角函數基本關系求得sinC,則利用三角形面積公式表示三角形的面積化簡整理,根據A的范圍確定面積的最大值
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,一艘船以32.2n mile/h的速度向正北航行.在A處看燈塔S在船的北偏東的方向,30 min后航行到B處,在B處看燈塔在船的北偏東的方向,已知距離此燈塔6.5n mile以外的海區(qū)為航行安全區(qū)域,這艘船可以繼續(xù)沿正北方向航行嗎?
參考數據:sin115="0.9063," sin20=0.3420

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分13分)我炮兵陣地位于地面A處,兩觀察所分別位于地面點C和D處,已知CD=6,∠ACD=45°,∠ADC=75°, 目標出現(xiàn)于地面點B處時,測得∠BCD=30°,∠BDC=15°(如圖),求炮兵陣地到目標的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
在△ABC中,角A、B、C所對邊分別為a,b,c,已知
(1)求角C的大;
(2)若最長邊的邊長為l0 ,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

△ABC中,它的三邊分別為a,b,c,若A=120°,a=5,則b+c的最大值為       。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

. (本小題滿分10分)
的內角A、B、C所對的邊分別為、b、c,已知
(Ⅰ)求的周長;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,

一艘船以20千米/小時的速度向正北航行,船在A處看見燈塔B在船的東北方向,1小時后船在C處看見燈塔B在船的北偏東75°的方向上,這時船與燈塔的距離BC等于__________千米。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

平面凸多邊形各內角成等差,最小角內為,公差為,則此多邊形為(  )
A.四邊形B.五邊形
C.六邊形D.四邊形或六邊形

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

中,角所對的邊長分別為,若,,則( )
A.B.
C.D.的大小關系不能確定

查看答案和解析>>

同步練習冊答案