點(diǎn)P是橢圓上的一點(diǎn),F1、F2是橢圓的兩個(gè)焦點(diǎn),又知點(diǎn)Px軸上方,F2是右焦點(diǎn),直線PF2的斜率為1.則點(diǎn)P到右準(zhǔn)線的距離為

A.        B.           C.           D.

D?

解析:y=x-1與橢圓聯(lián)立,x2-2x-2=0,Δ=18.?

Px軸上方,?

x==.?∴PF2=(x-1).?

P到右準(zhǔn)線的距離?

d==2·(x-1)=.?

選D.?


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于坐標(biāo)軸對(duì)稱的橢圓經(jīng)過兩點(diǎn)A(0,2)和B(
1
2
,
3
)
;
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若點(diǎn)P是橢圓上的一點(diǎn),F(xiàn)1和F2是焦點(diǎn),且∠F1PF2=30°,求△F1PF2的面積、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(0,-2),F(xiàn)2(0,2)是橢圓的兩個(gè)焦點(diǎn),點(diǎn)P是橢圓上的一點(diǎn),且|PF1|+|PF2|=6,則橢圓的標(biāo)準(zhǔn)方程是( 。
A、
x2
36
+
y2
32
=1
B、
x2
32
+
y2
36
=1
C、
x2
9
+
y2
5
=1
D、
x2
5
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓的中心為原點(diǎn),焦點(diǎn)在x軸上,點(diǎn)P是橢圓上的一點(diǎn),P在x軸上的射影恰為橢圓的左焦點(diǎn),P與中心O的連線平行于右頂點(diǎn)與上頂點(diǎn)的連線,且左焦點(diǎn)與左頂點(diǎn)的距離等于
10
-
5
,試求橢圓的離心率及其方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
2
2
,點(diǎn)P是橢圓上的一點(diǎn),且點(diǎn)P到橢圓E兩焦點(diǎn)的距離之和為4
2

(I)求橢圓E的方程;
(II)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且
OA
OB
?若存在,求出該圓的方程;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:3x+4y-12=0與橢圓
x2
16
+
y2
9
=1
相交于A、B兩點(diǎn),點(diǎn)P是橢圓上的一點(diǎn),若三角形PAB的面積為12,則滿足條件的點(diǎn)P的個(gè)數(shù)為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案