求圓上的點到直線的距離的最小值        

 

【答案】

【解析】解:因為圓上點到直線距離的最小值即為圓心到直線的距離減去圓的半徑1,即為

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設圓M:x2+y2=8,將曲線上每一點的縱坐標壓縮到原來的
12
,對應的橫坐標不變,得到曲線C.經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交曲線C于A、B兩個不同點.
(1)求曲線C的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設圓M:x2+y2=8,將圓上每一點的橫坐標不變,縱坐標壓縮到原來的
12
,得到曲線C.點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交曲線C于A、B兩個不同點.
(1)求曲線C的方程;
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省濰坊市高三2月月考理科數(shù)學 題型:解答題

(本小題滿分12分)

給定橢圓,稱圓心在原點,半徑為的圓是

橢圓的“準圓”。若橢圓的一個焦點為,其短軸上的一個端點到的距

離為.

(Ⅰ)求橢圓的方程和其“準圓”方程.

(Ⅱ)點是橢圓的“準圓”上的一個動點,過動點作直線使得與橢

都只有一個交點,且分別交其“準圓”于點

(1)當為“準圓”與軸正半軸的交點時,求的方程.

(2)求證:為定值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設圓M:x2+y2=8,將曲線上每一點的縱坐標壓縮到原來的數(shù)學公式,對應的橫坐標不變,得到曲線C.經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交曲線C于A、B兩個不同點.
(1)求曲線C的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省高考數(shù)學沖刺預測試卷08(理科)(解析版) 題型:解答題

設圓M:x2+y2=8,將圓上每一點的橫坐標不變,縱坐標壓縮到原來的,得到曲線C.點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交曲線C于A、B兩個不同點.
(1)求曲線C的方程;
(2)求m的取值范圍.

查看答案和解析>>

同步練習冊答案