若2+22+……+2n>130,n∈N*,則n的最小值為________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的通項(xiàng)公式為an=(2n-1)•2n,我們用錯(cuò)位相減法求其前n項(xiàng)和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,兩式項(xiàng)減得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.類比推廣以上方法,若數(shù)列{bn}的通項(xiàng)公式為bn=n2•2n,
則其前n項(xiàng)和Tn=
(n2-2n+3)•2n+1-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,過拋物線C上的點(diǎn)A作準(zhǔn)線l的垂線,垂足為M,若△AMF與△AOF(其中O為坐標(biāo)原點(diǎn))的面積之比為3:1,則點(diǎn)A的坐標(biāo)為
(2,±2
2
).
(2,±2
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面是一道選擇題的兩種解法,兩種解法看似都對(duì),可結(jié)果并不一致,問題出在哪兒?
[題]在△ABC中,a=x,b=2,B=45°,若△ABC有兩解,則x的取值范圍是( 。
A.(2,+∞)B.(0,2)C.(2,  2
2
)
D.(
2
,  2)

[解法1]△ABC有兩解,asinB<b<a,xsin45°<2<x,即2<x<2
2
,故選C.
[解法2]
a
sinA
=
b
sinB
,sinA=
asinB
b
=
xsin45°
2
=
2
x
4

△ABC有兩解,bsinA<a<b,
2
x
4
<x<2
,即0<x<2,故選B.
你認(rèn)為
解法1
解法1
是正確的  (填“解法1”或“解法2”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下面是一道選擇題的兩種解法,兩種解法看似都對(duì),可結(jié)果并不一致,問題出在哪兒?
[題]在△ABC中,a=x,b=2,B=45°,若△ABC有兩解,則x的取值范圍是( 。
A.(2,+∞)B.(0,2)C.(2,  2
2
)
D.(
2
,  2)

[解法1]△ABC有兩解,asinB<b<a,xsin45°<2<x,即2<x<2
2
,故選C.
[解法2]
a
sinA
=
b
sinB
sinA=
asinB
b
=
xsin45°
2
=
2
x
4

△ABC有兩解,bsinA<a<b,
2
x
4
<x<2
,即0<x<2,故選B.
你認(rèn)為______是正確的  (填“解法1”或“解法2”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下面是一道選擇題的兩種解法,兩種解法看似都對(duì),可結(jié)果并不一致,問題出在哪兒?
[題]在△ABC中,a=x,b=2,B=45°,若△ABC有兩解,則x的取值范圍是( 。
A.(2,+∞)B.(0,2)C.(2,  2
2
)
D.(
2
,  2)

[解法1]△ABC有兩解,asinB<b<a,xsin45°<2<x,即2<x<2
2
,故選C.
[解法2]
a
sinA
=
b
sinB
,sinA=
asinB
b
=
xsin45°
2
=
2
x
4

△ABC有兩解,bsinA<a<b,
2
x
4
<x<2
,即0<x<2,故選B.
你認(rèn)為______是正確的  (填“解法1”或“解法2”)

查看答案和解析>>

同步練習(xí)冊(cè)答案