已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為
2
2
.求橢圓C的方程.
考點:橢圓的標(biāo)準(zhǔn)方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用橢圓短軸長為2,離心率為
2
2
,建立方程,求出a,b,即可求橢圓C的方程.
解答: 解:∵橢圓短軸長為2,離心率為
2
2
,
∴b=1,
a2-1
a
=
2
2
,
∴a=
2
,b=1,
∴橢圓C的方程為:
x2
2
+y2=1
點評:本題考查橢圓的方程,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
OB
是不共線的向量,若A,B,P三點共線,求證:存在實數(shù)x,y使
OP
=x
OA
+y
OB
且x+y=1,反之成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題P:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為空集.命題Q:函數(shù)y=(2a2-a)x為增函數(shù).P、Q中有且只有一個是真命題,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)
cos(α+π)sin(-α)
cos(-3π-α)sin(-α-4π)

(2)
cos(α-
π
2
)
sin(
2
+α)
•sin(α-2π)•cos(2π-α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)條件 p:A={x|x2-3x-4<0},條件q:B={x|-a≤x≤a+1},若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,且離心率為
2
2
,點A(-
2
2
,
3
2
)在橢圓C上.
(1)求橢圓C的方程;
(2)是否存在斜率為k的直線l與橢圓C交于不同的兩點M、N,使直線F2M與F2N的傾斜角互補,且直線l是否恒過定點,若存在,求出該定點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
16
+
y2
4
=1內(nèi)一點M(2,1)的一條直線與橢圓交于A,B兩點,如果弦AB被M點平分,那么這樣的直線是否存在?若存在,求其方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一枚質(zhì)地均勻的骰子連續(xù)拋擲兩次,其向上的點數(shù)和為6的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若ξ~N(-1,62),且P(-3≤ξ≤-1)=0.4,則P(ξ≥1)等于
 

查看答案和解析>>

同步練習(xí)冊答案