【題目】在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ﹣ )=
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的極坐標(biāo).

【答案】
(1)解:圓O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,

故圓O 的直角坐標(biāo)方程為:x2+y2=x+y,即x2+y2﹣x﹣y=0.

直線l: ,即ρsinθ﹣ρcosθ=1,則直線的直角坐標(biāo)方程為:y﹣x=1,即x﹣y+1=0


(2)解:由 ,可得 ,直線l與圓O公共點(diǎn)的直角坐標(biāo)為(0,1),

故直線l 與圓O 公共點(diǎn)的一個(gè)極坐標(biāo)為


【解析】(1)圓O的方程即ρ2=ρcosθ+ρsinθ,可得圓O 的直角坐標(biāo)方程為:x2+y2=x+y,即x2+y2﹣x﹣y=0.(2)由 ,可得直線l與圓O公共點(diǎn)的直角坐標(biāo)為(0,1),由此求得線l與圓O公共點(diǎn)的極坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求直線laxyb0經(jīng)過(guò)兩直線l12x2y30l23x5y10交點(diǎn)的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在數(shù)列中,若為常數(shù))則稱為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的有關(guān)判斷( )

①若是“等方差數(shù)列”,在數(shù)列 是等差數(shù)列;

是“等方差數(shù)列”;

③若是“等方差數(shù)列”,則數(shù)列為常)也是“等方差數(shù)列”;

④若既是“等方差數(shù)列”又是等差數(shù)列,則該數(shù)列是常數(shù)數(shù)列.

其中正確命題的個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下列條件,分別求拋物線的標(biāo)準(zhǔn)方程:

(1)拋物線的焦點(diǎn)是雙曲線16x2-9y2=144的左頂點(diǎn);

(2)拋物線的焦點(diǎn)Fx軸上,直線y=-3與拋物線交于點(diǎn)A,AF=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 所在平面互相垂直,且, 分別為AC、DCAD的中點(diǎn)

1)求證: 平面BCG;

2)求三棱錐D-BCG的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出如圖所示的對(duì)應(yīng):

其中構(gòu)成從A到B的映射的個(gè)數(shù)為(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2
(1)求函數(shù)f(x)的定義域和值域;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=a (a>0,且a≠1),x∈[0, ]的最大值比最小值大2a,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)方程有3個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍;

(Ⅲ)當(dāng)時(shí),若對(duì)于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案