【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實數(shù)m的取值范圍是(
A.
B.
C.
D.

【答案】D
【解析】解:當x∈[0, ]時,2x+ ∈[ , ],sin(2x+ )∈[ ,1], f(x)=2sin(2x+ )∈[1,2],
同理可得2x﹣ ∈[﹣ , ],cos(2x﹣ )∈[ ,1],
g(x)=mcos(2x﹣ )﹣2m+3∈[﹣ +3,﹣m+3],
對任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,
,求得1≤m≤ ,
故選:D.
由題意可得,當x∈[0, ]時,g(x)的值域是f(x)的值域的子集,由此列出不等式組,求得m的范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)若不等式上恒成立,求實數(shù)a的取值范圍;

(Ⅲ)若,求證不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙十一網購狂歡,快遞業(yè)務量猛增.甲、乙兩位快遞員日到日每天送件數(shù)量的莖葉圖如圖所示.

)根據莖葉圖判斷哪個快遞員的平均送件數(shù)量較多(寫出結論即可);

)求甲送件數(shù)量的平均數(shù);

)從乙送件數(shù)量中隨機抽取個,求至少有一個送件數(shù)量超過甲的平均送件數(shù)量的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(x)的圖象關于點(﹣ ,0)成中心對稱,且對任意的實數(shù)x都有 ,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)+…+f(2 017)=(
A.0
B.﹣2
C.1
D.﹣4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)在其定義區(qū)間[a,b]上滿足①f(x)>0;②f′(x)<0;③對任意的x1 , x2∈[a,b],式子 恒成立.記S1= f(x)dx,S2= (b﹣a),S3=f(b)(b﹣a),則S1 , S2 , S3的大小關系為 . (按由小到大的順序)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲乙丙三輛汽車在不同速度下的燃油效率情況,下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時,相同條件下,在該市用丙車比乙車更省油.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))是定義在上的奇函數(shù).

(1)求的值;

(2)求函數(shù)的值域;

(3)當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .任取t∈R,若函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),記g(t)=M(t)﹣m(t).
(1)求函數(shù)f(x)的最小正周期及對稱軸方程;
(2)當t∈[﹣2,0]時,求函數(shù)g(t)的解析式;
(3)設函數(shù)h(x)=2|xk|,H(x)=x|x﹣k|+2k﹣8,其中實數(shù)k為參數(shù),且滿足關于t的不等式 有解,若對任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓)的左、右焦點分別為,點在橢圓上, , , 的面積為.

(Ⅰ)求該橢圓的標準方程;

(Ⅱ)是否存在圓心在軸上的圓,使圓在軸的上方與橢圓

有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點?若存在,求圓的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案