考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專(zhuān)題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(Ⅰ)由a
n與1的等差中項(xiàng)等于
得遞推式S
n=
,由此求出數(shù)列首項(xiàng),結(jié)合a
n+1=S
n+1-S
n得到
{a
n}是以1為首項(xiàng),2為公差的等差數(shù)列,則數(shù)列{a
n}的通項(xiàng)公式可求;
(Ⅱ)把數(shù)列{a
n}的通項(xiàng)公式代入b
n=a
n(
)
n,然后利用錯(cuò)位相減法求數(shù)列{b
n}的前n項(xiàng)和T
n.
解答:
解:(Ⅰ)由題意知得,
=,即S
n=
.
∴a
1=S
1=1.
又∵a
n+1=S
n+1-S
n=
[(a
n+1+1)
2-(a
n+1)
2],
∴(a
n+1-1)
2-(a
n+1)
2=0,
即(a
n+1+a
n)(a
n+1-a
n-2)=0,
∵a
n>0,
∴a
n+1-a
n=2,
∴{a
n}是以1為首項(xiàng),2為公差的等差數(shù)列,
∴a
n=2n-1;
(2)b
n=a
n(
)
n=(2n-1)
()n,
∴T
n=b
1+b
2+…+b
n=
1•()1+3•()2+…+(2n-1)()n.
Tn=1•()2+3•()3+…+(2n-3)()n+(2n-1)()n+1.
兩式作差得:
Tn=+2[()2+()3+…+()n]-(2n-1)()n+1=
+2×-(2n-1)()n+1.
∴
Tn=1-.
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了錯(cuò)位相減法求數(shù)列的和,是中檔題.