【題目】某班主任利用周末時間對該班級年最后一次月考的語文作文分數(shù)進行統(tǒng)計,發(fā)現(xiàn)分數(shù)都位于之間,現(xiàn)將所有分數(shù)情況分為、、、、、、共七組,其頻率分布直方圖如圖所示,已知.
(1)求頻率分布直方圖中、的值;
(2)求該班級這次月考語文作文分數(shù)的平均數(shù)和中位數(shù).(每組數(shù)據(jù)用該組區(qū)間中點值作為代表)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.
(1)證明:面面;
(2)當為中點時,求二面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真,求的取值范圍.
【答案】
【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.
試題解析:
真
,
真 或
∴
真假
假真
∴范圍為
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)是圓上的動點,點是在軸上的投影, 為上一點,且.
(1)當在圓上運動時,求點的軌跡的方程;
(2)求過點且斜率為的直線被所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選)已知函數(shù),其中正確結(jié)論的是( )
A.當時,函數(shù)有最大值.
B.對于任意的,函數(shù)一定存在最小值.
C.對于任意的,函數(shù)是上的增函數(shù).
D.對于任意的,都有函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=a2-a-6+i,分別求出滿足下列條件的實數(shù)a的值:
(1)z是實數(shù);
(2)z是虛數(shù);
(3)z是0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,,.
(1)若是線段的中點,求證:平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.
(1)證明:平面平面;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,已知每售出一箱酸奶的利潤為50元,當天未售出的酸奶降價處理,以每箱虧損10元的價格全部處理完.若供不應(yīng)求,可從其它商店調(diào)撥,每銷售1箱可獲利30元.假設(shè)該超市每天的進貨量為14箱,超市的日利潤為y元.為確定以后的訂購計劃,統(tǒng)計了最近50天銷售該酸奶的市場日需求量,其頻率分布表如圖所示.
(1)求的值;
(2)求y關(guān)于日需求量的函數(shù)表達式;
(3)以50天記錄的酸奶需求量的頻率作為酸奶需求量發(fā)生的概率,估計日利潤在區(qū)間[580,760]內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)(其中,為自然對數(shù)的底數(shù)).
①,使得直線為函數(shù)的一條切線;
②對,函數(shù)的導(dǎo)函數(shù)無零點;
③對,函數(shù)總存在零點;
則上述結(jié)論正確的是______.(寫出所有正確的結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com