【題目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 共線(xiàn),求邊長(zhǎng)b和c的值.

【答案】
(1)解:由題意知f(x)= =2cos2x﹣ sin2x=1+cos2x﹣ sin2x=1+2cos(2x+ ).

則函數(shù)f(x)的最小正周期T= =π,

,得

則f(x)的單調(diào)遞減區(qū)間[kπ﹣ ,kπ﹣ ],k∈Z


(2)解:∵ ,∴ ,又

,即

,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc.

因?yàn)橄蛄? 共線(xiàn),所以2sinB=3sinC,

由正弦定理得2b=3c.∴


【解析】(1)根據(jù)向量數(shù)量積的公式進(jìn)行化簡(jiǎn),結(jié)合三角函數(shù)的輔助角公式進(jìn)行轉(zhuǎn)化求解即可.(2)根據(jù)條件先求出A的大小,結(jié)合余弦定理以及向量共線(xiàn)的坐標(biāo)公式進(jìn)行求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】各棱長(zhǎng)都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動(dòng)點(diǎn)(含邊界),且GE∥平面ABD,若 =1,則| |=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若f(x)=x2﹣2x﹣4lnx,則f(x)的單調(diào)遞增區(qū)間為(
A.(﹣1,0)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線(xiàn)形拱橋,當(dāng)水面在l時(shí),拱頂離水面4米,水面寬8米.水位上升1米后,水面寬為(
A.
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行抽獎(jiǎng)活動(dòng),從裝有編號(hào)0,1,2,3四個(gè)小球的抽獎(jiǎng)箱中,每次取出后放回,連續(xù)取兩次,取出的兩個(gè)小球號(hào)碼相加之和等于5中一等獎(jiǎng),等于4中二等獎(jiǎng),等于3中三等獎(jiǎng).
(1)求中三等獎(jiǎng)的概率;
(2)求中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)若,求曲線(xiàn)處的切線(xiàn)方程;

(2)若當(dāng)時(shí), ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(1,0),直線(xiàn)l:x=﹣1,點(diǎn)P在直線(xiàn)l上移動(dòng),R是線(xiàn)段PF與y軸的交點(diǎn),RQ⊥FP,PQ⊥l.
(1)求動(dòng)點(diǎn)Q的軌跡的方程;
(2)記Q的軌跡的方程為E,過(guò)點(diǎn)F作兩條互相垂直的曲線(xiàn)E的弦AB、CD,設(shè)AB、CD的中點(diǎn)分別為M,N.求證:直線(xiàn)MN必過(guò)定點(diǎn)R(3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x|x2-12|的定義域?yàn)閇0,m],值域?yàn)閇0,am2],則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的極坐標(biāo)方程為 ,直線(xiàn)l的參數(shù)方程為 (t為常數(shù),t∈R)
(1)求直線(xiàn)l的普通方程和圓C的直角坐標(biāo)方程;
(2)求直線(xiàn)l與圓C相交的弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案