某著名紡織集團為了減輕生產(chǎn)成本繼續(xù)走高的壓力,計劃提高某種產(chǎn)品的價格,為此銷售部在10月1日至10月5日連續(xù)五天對某個大型批發(fā)市場中該產(chǎn)品一天的銷售量及其價格進行了調查,其中該產(chǎn)品的價格x(元)與銷售量y(萬件)之間的數(shù)據(jù)如下表所示:
日期
10月1日
10月2日
10月3日
10月4日
10月5日
價格x(元)
9
9.5
10
10.5
11
銷售量
y(萬件)
11
10
8
6
5
已知銷售量y與價格x之間具有線性相關關系,其回歸直線方程為:=-3.2x+,若該集團提高價格后該批發(fā)市場的日銷售量為7.36萬件,則該產(chǎn)品的價格約為(  )
(A)14.2元        (B)10.8元
(C)14.8元        (D)10.2元
D
依題意=10,=8.因為線性回歸直線必過樣本中心點(,),所以8=-3.2×10+,解得=40.所以回歸直線方程為=-3.2x+40.令y=7.36,則7.36=-3.2x+40,解得x=10.2.所以該產(chǎn)品的價格約為10.2元.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知x,y取值如下表:
x
0
1
4
5
6
8
y
1.3
1.8
5.6
6.1
7.4
9.3
 
從所得的散點圖分析可知:y與x線性相關,且=0.95x+a,則a=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一名小學生的年齡和身高(單位:cm)的數(shù)據(jù)如下: 
年齡
6
7
8
9
身高
118
126
136
144
由散點圖可知,身高與年齡之間的線性回歸直線方程為,預測該學生10歲時的身高為(  )
A.154      B. 153       C.152    D. 151

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

調查了某地若干戶家庭的年收入x(單位:萬元)和年飲食支出y(單元:萬元),調查顯示年收入x與年飲食支出y具有線性相關關系,并由調查數(shù)據(jù)得到y(tǒng)對x的回歸直線方程:=0.254x+0.321.由回歸直線方程可知,家庭年收入每年增加1萬元,年飲食支出平均增加    萬元.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設三組實驗數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3)的回歸直線方程是:=x+,使代數(shù)式[y1-(x1+)]2+[y2-(x2+)]2+[y3-(x3+)]2的值最小時,=-,=(,分別是這三組數(shù)據(jù)的橫、縱坐標的平均數(shù)),
若有7組數(shù)據(jù)列表如下:
x
2
3
4
5
6
7
8
y
4
6
5
6.2
8
7.1
8.6
(1)求上表中前3組數(shù)據(jù)的回歸直線方程.
(2)若|yi-(xi+)|≤0.2,即稱(xi,yi)為(1)中回歸直線的擬合“好點”,求后4組數(shù)據(jù)中擬合“好點”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下面兩個變量間的關系不是函數(shù)關系的是(  )
A.正方體的棱長與體積
B.角的度數(shù)與它的正弦值
C.單位產(chǎn)量為常數(shù)時,土地面積與糧食總產(chǎn)量
D.日照時間與水稻畝產(chǎn)量

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

觀測兩個相關變量,得到如下數(shù)據(jù):






5
4
3
2
1






5
4.1
2.9
2.1
0.9
則兩變量之間的線性回歸方程為(    )
A.    B.   C.   D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某飲料店的日銷售收入y(單位:百元)與當天平均氣溫x(單位:℃)之間有下列數(shù)據(jù):
x
-2
-1
0
1
2
y
5
4
2
2
1
甲、乙、丙三位同學對上述數(shù)據(jù)進行了研究,分別得到了x與y之間的三個線性回歸方程:①;②;③,④,其中正確方程的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對具有線性相關關系的的變量,,測得一組數(shù)據(jù)如下表

2
4
5
6
8

20
40
60
70
80
根據(jù)上表,利用最小二乘法得它們的回歸直線方程為,據(jù)此模型來預測當時,的估計值為 (   )
A.210   B.210.5 C.211.5 D.212.5

查看答案和解析>>

同步練習冊答案