設(shè)為實數(shù),函數(shù),
(1)當(dāng)時,討論的奇偶性;
(2)當(dāng)時,求的最大值.

(1)當(dāng)時,函數(shù)為奇函數(shù);當(dāng)時,函數(shù)既不是奇函數(shù)又不是偶函數(shù).(2)綜上:當(dāng)時,;當(dāng)時,;當(dāng)時,

解析試題分析:(1)因為函數(shù)解析式中的絕對值受取值的約束,所以應(yīng)對的值進(jìn)行分類討論,當(dāng)時,也可檢驗的值關(guān)系來判斷函數(shù)的奇偶;(2)對與自變量的范圍進(jìn)行分類討論
試題解析:(1)當(dāng)時,,
此時為奇函數(shù).                                  3分
當(dāng)時,,,
,
此時既不是奇函數(shù)又不是偶函數(shù)                6分
(2)當(dāng)時,
時,為增函數(shù),
時,.        8分
當(dāng)時,
,
,其圖象如圖所示:         10分

①當(dāng),即時,.                  11分
②當(dāng),即時,        12分
③當(dāng),即時,          13分
綜上:當(dāng)時,;zxxk
當(dāng)時,
當(dāng)時,;                        14分
考點:1.函數(shù)的奇偶性;2.函數(shù)的最值;3.分類討論的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)定義域為[0,1]的函數(shù)同時滿足以下三個條件時稱為“友誼函數(shù)”:
(1)對任意的,總有≥0;
(2);
(3)若成立,則下列判斷正確的有     .
(1)為“友誼函數(shù)”,則;
(2)函數(shù)在區(qū)間[0,1]上是“友誼函數(shù)”;
(3)若為“友誼函數(shù)”,且0≤≤1,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當(dāng)時, 的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做函數(shù)的等域區(qū)間.
(1)已知上的正函數(shù),求的等域區(qū)間;
(2)試探求是否存在,使得函數(shù)上的正函數(shù)?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域為的函數(shù)是奇函數(shù).
(1)求的值
(2)判斷并證明的單調(diào)性;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

命題p:關(guān)于x的不等式,對一切恒成立;命題q:函是增函數(shù).若p或q為真,p且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)求該函數(shù)的定義域和值域;(2)判斷函數(shù)的奇偶性,并加以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)當(dāng)時,解不等式
(2)若函數(shù)有最大值,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1) 當(dāng)時,函數(shù)恒有意義,求實數(shù)a的取值范圍;
(2) 是否存在這樣的實數(shù)a,使得函數(shù)在區(qū)間上為增函數(shù),并且的最大值為1.如果存在,試求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)是定義域為的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)若,且上的最小值為,求的值.

查看答案和解析>>

同步練習(xí)冊答案