【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)P(1,﹣2),直線l: (m 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以 x軸的正半軸為極軸建立極坐標(biāo)系;曲線C的極坐標(biāo)方程為ρsin2θ=3cosθ;直線l與曲線C的交點(diǎn)為A,B.
(1)求直線l和曲線C的普通方程;
(2)求 + 的值.

【答案】
(1)解:在平面直角坐標(biāo)系xOy中直線l: (m 為參數(shù))的參數(shù)方程轉(zhuǎn)化為普通方程為:x﹣y﹣3=0.

曲線C的極坐標(biāo)方程為ρsin2θ=3cosθ轉(zhuǎn)化為普通方程為;y2=2x.


(2)把直線l: (m 為參數(shù))轉(zhuǎn)化為: ,代入曲線方程;y2=2x.

得到:

求得:t1+t2=6 ,t1t2=4

所以: + = = =


【解析】(1)對(duì)參數(shù)方程進(jìn)行消參得到普通方程,對(duì)極坐標(biāo)方程進(jìn)行轉(zhuǎn)化得到普通方程;(2)將直線l的方程轉(zhuǎn)化為t的參數(shù)方程,并代入到曲線方程中,根據(jù)t的幾何意義可求得值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判.每局比賽結(jié)束時(shí),負(fù)的一方在下局當(dāng)裁判,假設(shè)每局比賽中,甲勝乙的概率為 ,甲勝丙、乙勝丙的概率都是 ,各局比賽的結(jié)果相互獨(dú)立,第一局甲當(dāng)裁判.
(1)求第3局甲當(dāng)裁判的概率;
(2)記前4局中乙當(dāng)裁判的次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}中的a2、a4032是函數(shù) 的兩個(gè)極值點(diǎn),則log2(a2a2017a4032)=( 。
A.
B.4
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)F是拋物線τ:x2=2py (p>0)的焦點(diǎn),點(diǎn)A是拋物線上的定點(diǎn),且 =(2,0),點(diǎn)B,C是拋物線上的動(dòng)點(diǎn),直線AB,AC斜率分別為k1 , k2

(I)求拋物線τ的方程;
(Ⅱ)若k1﹣k2=2,點(diǎn)D是點(diǎn)B,C處切線的交點(diǎn),記△BCD的面積為S,證明S為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若△ABC的三內(nèi)角A、B、C對(duì)應(yīng)邊a、b、c滿足2a=b+c,則角A的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為矩形,M是AD上一點(diǎn).

(1)求證:AB⊥PM;
(2)若N是PB的中點(diǎn),且AN∥平面PCM,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知PC⊥平面ABC,AC=2 ,PC=BC,AB=4,∠BAC=30°. 點(diǎn)D是線段AB上靠近B的四等分點(diǎn),PE∥CB,PC∥EB.

(Ⅰ)證明:直線AB⊥平面PCD;
(Ⅱ)若F為線段AC上靠近C的四等分點(diǎn),求平面PDF與平面CBD所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,則函數(shù)y=f(x)的大致圖象為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第五屆北京農(nóng)業(yè)嘉年華于2017年3月11日至5月7日在昌平區(qū)興壽鎮(zhèn)草莓博覽園中舉辦,設(shè)置“三館兩園一帶一谷一線”八大功能板塊.現(xiàn)安排六名志愿者去其中的“三館兩園”參加志愿者服務(wù)工作,若每個(gè)“館”與“園”都至少安排一人,則不同的安排方法種數(shù)為( 。
A.C A
B.5C A
C.5A
D.C A

查看答案和解析>>

同步練習(xí)冊(cè)答案