(2011•順義區(qū)二模)設(shè)集合M={x|x2-1<0},N={x|2x>1},則M∪N等于( 。
分析:把集合M和集合N的所有元素合并到一起,構(gòu)成M∪N,由此利用集合M={x|x2-1<0}={x|-1<x<1},N={x|2x>1}={x|x>0},能求出M∪N.
解答:解:∵集合M={x|x2-1<0}={x|-1<x<1},
N={x|2x>1}={x|x>0},
M∪N={x|x>-1}.
故選A.
點(diǎn)評:本題考查集合的并集的定義和運(yùn)算,是基礎(chǔ)題.解題時要認(rèn)真審題,注意一元二次不等式和指數(shù)函數(shù)的性質(zhì)的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)在△ABC中,若b=1,c=
3
,∠A=
π
6
,則a=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)已知函數(shù)f(x)=2-sin(2x+
π
6
)-2sin2x
,x∈R
(1)求函數(shù)f(x)的最小正周期;
(2)記△ABC的內(nèi)角A,B,C的對邊長分別為a,b,c,若f(
B
2
)=1,b=1,c=
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)已知定義在區(qū)間[0,
2
]上的函數(shù)y=f(x)的圖象關(guān)于直線x=
4
對稱,當(dāng)x
4
時,f(x)=cosx,如果關(guān)于x的方程f(x)=a有解,記所有解的和為S,則S不可能為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)某棉紡廠為了解一批棉花的質(zhì)量,從中隨機(jī)抽測100根棉花纖維的長度(棉花纖維的長度是棉花質(zhì)量的重要指標(biāo)).所得數(shù)據(jù)均在區(qū)間[5,40]中,其頻率分布直方圖如圖所示,由圖中數(shù)據(jù)可知a=
0.05
0.05
,在抽測的100根中,棉花纖維的長度在[20,30]內(nèi)的有
55
55
根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)已知
e1
=(1,0),
e2
=(0,1)
a
=2
e1
+
e2
,
b
e1
-
e2
,當(dāng)
a
b
時,實(shí)數(shù)λ等于(  )

查看答案和解析>>

同步練習(xí)冊答案