精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.

(1)證明:坐標原點O在圓M上;

(2)設圓M過點P(4,-2),求直線l與圓M的方程.

【答案】(1)見解析;(2)

【解析】(1)證明略;(2)直線的方程為,圓的方程為.或直線的方程為,圓的方程為

試題分析:(1)設出點的坐標,聯(lián)立直線與拋物線的方程,由斜率之積為可得,即得結論;(2)結合(1)的結論求得實數的值,分類討論即可求得直線的方程和圓的方程.

試題解析:(1)設.

可得,則.

,故.

因此的斜率與的斜率之積為,所以.

故坐標原點在圓上.

(2)由(1)可得.

故圓心的坐標為,圓的半徑.

由于圓過點,因此,故,

,

由(1)可得.

所以,解得.

時,直線的方程為,圓心的坐標為,圓的半徑為,圓的方程為.

時,直線的方程為,圓心的坐標為,圓的半徑為,圓 的方程為.

【名師點睛】直線與拋物線的位置關系和直線與橢圓、雙曲線的位置關系類似,一般要用到根與系數的關系;在解決直線與拋物線的位置關系時,要特別注意直線與拋物線的對稱軸平行的特殊情況.中點弦問題,可以利用點差法,但不要忘記驗證或說明中點在曲線內部.

型】解答
束】
21

【題目】已知函數

(1)若,求a的值;

(2)設m為整數,且對于任意正整數n,,求m的最小值.

【答案】(1);(2)

【解析】試題分析:(1)由原函數與導函數的關系可得x=a的唯一最小值點,列方程解得

(2)由題意結合(1)的結論對不等式進行放縮,求得,結合可知實數的最小值為.

試題解析:(1)的定義域為.

①若,因為,所以不滿足題意;

②若,由知,當時,;當時,,所以單調遞減,在單調遞增,故x=a的唯一最小值點.

由于,所以當且僅當a=1時,.故a=1.

(2)由(1)知當時,.

.從而

.

.

,所以的最小值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在一項研究中,為盡快攻克某一課題,某生物研究所分別設立了甲、乙兩個研究小組同時進行對比試驗,現(xiàn)隨機在這兩個小組各抽取40個數據作為樣本,并規(guī)定試驗數據落在[495,510)之內的數據作為理想數據,否則為不理想數據.試驗情況如表所示

(1)由以上統(tǒng)計數據完成下面2×2列聯(lián)表;

(2)判斷是否有90%的把握認為抽取的數據為理想數據與對兩個研究小組的選擇有關;說明你的理由;(下面的臨界值表供參考)

(參考公式:其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若數列滿足:對于任意均為數列中的項,則稱數列為“ 數列”.

(1)若數列的前項和,求證:數列為“ 數列”;

(2)若公差為的等差數列為“ 數列”,求的取值范圍;

(3)若數列為“ 數列”,,且對于任意,均有,求數列的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:

最高

氣溫

[10,

15)

[15,

20)

[20,

25)

[25,

30)

[30,

35)

[35,

40)

天數

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列.

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量n(單位:瓶)為多少時,Y的數學期望達到最大值?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.

(1)證明:坐標原點O在圓M上;

(2)設圓M過點P(4,-2),求直線l與圓M的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在幾何體ABCDE中,AB⊥平面BCE,且BCE是正三角形,四邊形ABCD為正方形,F是線段CD上的中點,G是線段BE的中點,且AB=2

1)求證:GF∥平面ADE;

2)求三棱錐FBGC的表面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓的左焦點的直線與橢圓交于兩點,直線過坐標原點且與直線的斜率互為相反數.若直線與橢圓交于兩點且均不與點重合,設直線軸所成的銳角為,直線軸所成的銳角為,判斷的大小關系并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2017年5月,“一帶一路”沿線的20國青年評選出了中國“新四大發(fā)明”:高鐵、支付寶、共享單車和網購.2017年末,“支付寶大行動”用發(fā)紅包的方法刺激支付寶的使用.某商家統(tǒng)計前5名顧客掃描紅包所得金額分別為5.5元,2.1元,3.3元,5.9元,4.7元,商家從這5名顧客中隨機抽取3人贈送臺歷.

(1)求獲得臺歷是三人中至少有一人的紅包超過5元的概率;

(2)統(tǒng)計一周內每天使用支付寶付款的人數與商家每天的凈利潤元,得到7組數據,如表所示,并作出了散點圖.

(i)直接根據散點圖判斷,哪一個適合作為每天的凈利潤的回歸方程類型.(的值取整數)

(ii)根據(i)的判斷,建立關于的回歸方程,并估計使用支付寶付款的人數增加到35時,商家當天的凈利潤.

參考數據:

22.86

194.29

268.86

3484.29

附:對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且滿足.

1)判斷函數上的單調性,并用定義證明;

2)設函數,若上有兩個不同的零點,求實數的取值范圍;

3)若存在實數,使得關于的方程恰有4個不同 的正根,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案