【題目】如圖所示是一個(gè)算法程序框圖,在集合中隨機(jī)抽取一個(gè)數(shù)值作為輸入,則輸出的的值落在區(qū)間內(nèi)的概率為

A. 0.8 B. 0.6 C. 0.5 D. 0.4

【答案】A

【解析】根據(jù)程序框圖可知,其功能為計(jì)算,

∵輸出的y值落在區(qū)間(5,3),即5<y<3,

①當(dāng)x<0時(shí),y=x+3,

∴5<x+3<3,解得8<x<0,

8<x<0符合題意;

②當(dāng)x=0時(shí),y=0∈(5,3),

x=0符合題意;

③當(dāng)x>0時(shí),y=x5,

∴5<x5<3,解得0<x<8,

0<x<8符合題意。

綜合①②③可得,x的取值為(8,8),

∵在集合A={x|10x10,xR}中隨機(jī)抽取一個(gè)數(shù)值做為x

故輸出的y值落在區(qū)間(5,3)內(nèi)的概率為.

本題選擇A選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) f(x)= 在[﹣2,3]上的最大值為2,則實(shí)數(shù)a的取值范圍是(
A.[ ln2,+∞ )
B.[0, ln2]
C.(﹣∞,0]
D.(﹣∞, ln2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,且此函數(shù)圖象過點(diǎn)(1,5).
(1)求實(shí)數(shù)m的值;
(2)判斷f(x)奇偶性;
(3)討論函數(shù)f(x)在[2,+∞)上的單調(diào)性?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的最大值;

(2)設(shè) 其中,證明: <1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:y2=8x與雙曲線C2 (a>0,b>0)有公共焦點(diǎn)F2 , 點(diǎn)A是曲線C1 , C2在第一象限的交點(diǎn),且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以雙曲線C2的另一焦點(diǎn)F1為圓心的圓M與直線y= 相切,圓N:(x﹣2)2+y2=1.過點(diǎn)P(1, )作互相垂直且分別與圓M、圓N相交的直線l1和l2 , 設(shè)l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,問: 是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)是定義在R上的減函數(shù),且f(x)>0恒成立,若對(duì)任意的x,y∈R,都有f(x﹣y)=
(1)求f(0)的值,并證明對(duì)任意的x,y∈R,f(x+y)=f(x)f(y);
(2)若f(﹣1)=3,解不等式 ≤9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=|x|,g(x)=
B.f(x)=lg x2 , g(x)=2lg x
C.f(x)= ,g(x)=x+1
D.f(x)= ? ,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,1]時(shí),0≤f(x)≤1;當(dāng)x∈(0,2)且x≠1時(shí),x(x﹣1)f′(x)<0.則方程f(x)=lg|x|根的個(gè)數(shù)為(
A.12
B.1 6
C.18
D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長為2的正三角形,頂點(diǎn)上的射影為點(diǎn),且, .

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案