若焦點(diǎn)在軸上的橢圓的離心率為,則的值為(   )
A.B.C.D.
C

試題分析:根據(jù)題意,由于焦點(diǎn)在軸上的橢圓的離心率為,那么說明2>m,同時(shí),故可知答案選C
點(diǎn)評(píng):主要是考查了橢圓的標(biāo)準(zhǔn)方程中a,b,c的關(guān)系的運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)動(dòng)直線交橢圓、兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過點(diǎn).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的離心率為,右準(zhǔn)線方程為。
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓上,求實(shí)數(shù)m的值。  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為:2.(1)過點(diǎn)C(-1,0)且以向量為方向向量的直線交橢圓于不同兩點(diǎn)A、B,若,則當(dāng)△OAB的面積最大時(shí),求橢圓的方程。
(2)設(shè)M,N為橢圓上的兩個(gè)動(dòng)點(diǎn),,過原點(diǎn)O作直線MN的垂線OD,垂足為D,求點(diǎn)D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn),,過且與坐標(biāo)軸不平行的直線與橢圓交于兩點(diǎn),如果的周長等于8。
(1)求橢圓的方程;
(2)若過點(diǎn)的直線與橢圓交于不同兩點(diǎn),試問在軸上是否存在定點(diǎn),使恒為定值?若存在,求出點(diǎn)的坐標(biāo)及定值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩定點(diǎn)E(-2,0),F(2,0),動(dòng)點(diǎn)P滿足,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M滿足,點(diǎn)M的軌跡為C.
(1)求曲線C的方程
(2)過點(diǎn)D(0,-2)作直線與曲線C交于A、B兩點(diǎn),點(diǎn)N滿足
(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


已知拋物線和橢圓都經(jīng)過點(diǎn),它們?cè)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011430494262.png" style="vertical-align:middle;" />軸上有共同焦點(diǎn),橢圓的對(duì)稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這兩條曲線的方程;
(2)對(duì)于拋物線上任意一點(diǎn),點(diǎn)都滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知過拋物線的焦點(diǎn)且斜率為的直線與拋物線交于兩點(diǎn),且,則                   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點(diǎn)的直線交直線,過點(diǎn)的直線軸于點(diǎn),,.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)直線l與相交于不同的兩點(diǎn)、,已知點(diǎn)的坐標(biāo)為(-2,0),點(diǎn)Q(0,)在線段的垂直平分線上且≤4,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案