已知三點(diǎn)在橢圓上,△ABC的重心與此橢圓的右焦點(diǎn)F(3,0)重合
(1)求橢圓方程
(2)求BC的方程.
【答案】分析:(1)將點(diǎn)A點(diǎn)的坐標(biāo)代入橢圓方程結(jié)合橢圓的右焦點(diǎn)F,解得橢圓的a,b,c,求出方程.
(2)利用重心的定義,得出BC中點(diǎn)的坐標(biāo),再利用差分法求BC所在直線的斜率,從而求出它的方程.
解答:解:(1)由題意:,故橢圓方程為:
(2)設(shè)B(x1,y1),C(x2,y2),由題意有:,故,兩式作差可得:
即:
故直線BC的方程為:,
即:40x-30y-136=0.
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程、橢圓的簡單性質(zhì)、直線方程求解.若知弦中點(diǎn)求弦所在直線方程時常用“差分法”求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知三點(diǎn)A(-1,0),B(1,0),C(-1,
3
2
),以A、B為焦點(diǎn)的橢圓經(jīng)過點(diǎn)C.
(I)求橢圓的方程;
(II)設(shè)點(diǎn)D(0,1),是否存在不平行于x軸的直線l與橢圓交于不同兩點(diǎn)M、N,使(
DM
+
DN
)•
MN
=0
?若存在,求出直線l斜率的取值范圍;若不存在,請說明理由;
(III)若對于y軸上的點(diǎn)P(0,n)(n≠0),存在不平行于x軸的直線l與橢圓交于不同兩點(diǎn)M、N,使(
PM
+
PN
)•
MN
=0
,試求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知三點(diǎn)A(-2,0)、B(2,0)C(1,
3
)
,△ABC的外接圓為圓,橢圓
x2
4
+
y2
2
=1
的右焦點(diǎn)為F.
(1)求圓M的方程;
(2)若點(diǎn)P為圓M上異于A、B的任意一點(diǎn),過原點(diǎn)O作PF的垂線交直線x=2
2
于點(diǎn)Q,試判斷直線PQ與圓M的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,已知三點(diǎn)A(-1,0),B(1,0),C(-1,
3
2
);以A、B為焦點(diǎn)的橢圓經(jīng)過C點(diǎn),
(1)求橢圓方程;
(2)設(shè)點(diǎn)D(0,1),是否存在不平行于x軸的直線l,與橢圓交于不同的兩點(diǎn)M、N,使(
PM
+
PN
)•
MN
=0?
若存在.求出直線l斜率的取值范圍;
(3)對于y軸上的點(diǎn)P(0,n)(n≠0),存在不平行于x軸的直線l與橢圓交于不同兩點(diǎn)M、N,使(
PM
+
PN
)•
MN
=0,試求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(4,
12
5
),B(x1y1),C(x2,y2)
三點(diǎn)在橢圓
x2
a2
+
y2
b2
=1
上,△ABC的重心與此橢圓的右焦點(diǎn)F(3,0)重合
(1)求橢圓方程
(2)求BC的方程.

查看答案和解析>>

同步練習(xí)冊答案