在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,M是棱AB的中點(diǎn),過(guò)A1,M,C三點(diǎn)的平面交棱C1D1于N點(diǎn),
(Ⅰ)求證:四邊形A1MCN為平行四邊形;
(Ⅱ)求直線CD1與平面A1MCN所成角的正弦值.
考點(diǎn):異面直線及其所成的角,棱柱的結(jié)構(gòu)特征
專(zhuān)題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)由已知條件推導(dǎo)出CM∥A1N,A1M∥CN,由此能證明四邊形A1MCN為平行四邊形.
(Ⅱ)延長(zhǎng)CN、DD1交于點(diǎn)P,過(guò)D作DQ⊥AN,垂足為Q,連結(jié)PQ,過(guò)D1作D1H⊥PQ,垂足為H,連結(jié)CH,由D1H⊥平面A1MCN,知∠D1CH即為直線CD1與平面A1MCN所成角,由此能求出直線CD1與平面A1MCN所成角的正弦值.
解答: (Ⅰ)證明:∵正方體ABCD-A1B1C1D1,
∴平面ABCD∥平面A1B1C1D1
∵平面A1MCN∩平面ABCD=CM,
平面A1MCN∩平面A1B1C1D1=A1N,
∴CM∥A1N,同理,A1M∥CN,
∴四邊形A1MCN為平行四邊形.
(Ⅱ)解:延長(zhǎng)CN、DD1交于點(diǎn)P,過(guò)D作DQ⊥AN,垂足為Q,
連結(jié)PQ,過(guò)D1作D1H⊥PQ,垂足為H,連結(jié)CH,
∵D1H⊥平面A1MCN,
∴∠D1CH即為直線CD1與平面A1MCN所成角,
在Rt△D1CH中,CD1=
2
a
,D1H=
6
6
a
,
sin∠D1CH=
D1H
CD1
=
3
6
,
∴直線CD1與平面A1MCN所成角的正弦值為
3
6
點(diǎn)評(píng):本題考查平行四邊形的證明,考查直線與平面所成角的正弦值的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一種細(xì)菌和一種病毒,每個(gè)細(xì)菌在每秒鐘殺死一個(gè)病毒的同時(shí)將自身分裂為3個(gè),現(xiàn)在有一個(gè)這樣的細(xì)菌和110個(gè)這樣的病毒,問(wèn)細(xì)菌將病毒全部殺死至少需要( 。
A、4秒鐘B、5秒鐘
C、6秒鐘D、7秒鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-2(-1)klnx(k∈N*),f′(x)表示f(x)的導(dǎo)函數(shù).
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)k為偶數(shù)時(shí),若函數(shù)f(x)的圖象恒在函數(shù)g(x)=(1-2a)x2的上方,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)k為奇數(shù)時(shí),設(shè)bn=
1
2
f′(n)-n,數(shù)列{bn}的前n項(xiàng)和為Sn,證明不等式(1+bn 
1
bn+1
>e對(duì)一切正整數(shù)n均成立,并比較S2014-2與ln2014的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a≥0,f(x)=x-1-ln2x+2alnx(x>0).
(Ⅰ)令F(x)=xf′(x),討論F(x)在(0,+∞)內(nèi)的單調(diào)性并求極值;
(Ⅱ)當(dāng)x>1時(shí),試判斷
x-1
lnx
與lnx-2a的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,F(xiàn)1,F(xiàn)2分別為橢圓
x2
a2
+
y2
b2
=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,△POF2是面積
3
的正三角形,求b2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg(x+1).
(Ⅰ)若0<f(1-2x)-f(x)<1,求x的取值范圍;
(Ⅱ)若g(x)是以2為周期的偶函數(shù),且當(dāng)0≤x≤1時(shí),有g(shù)(x)=f(x).求當(dāng)x∈[1,2]時(shí),函數(shù)y=g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一四棱錐P-ABCD的三視圖如圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).
(Ⅰ)求四棱錐P-ABCD的體積.
(Ⅱ)若點(diǎn)E為PC的中點(diǎn),AC∩BD=O,求證:EO∥平面PAD;
(Ⅲ)是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足an+1=2nan-an2+2,a1=1,n∈N*,求a2,a3,a4及an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,若
S 2n
S n
恒為非零常數(shù)k,則稱(chēng)數(shù)列{an}為“和諧數(shù)列”.
(1)公差不為零的等差數(shù)列{bn}的首項(xiàng)為1,且為“和諧數(shù)列”,求k的值及數(shù)列{bn}的通項(xiàng)公式;
(2)正項(xiàng)數(shù)列{xn}的前n項(xiàng)和為T(mén)n,且2Tn=xn(xn+1),(n∈N*),判斷數(shù)列{xn}是否為“和諧數(shù)列”,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案