對任意的實數(shù)
,不等式
恒成立,則實數(shù)
的取值范圍是 ( )
試題分析:當m=0時,原不等式化為-1<0,顯然符合題意,當m≠0時,
,∴-4<m<0,綜上,-4<m≤0,故選B
點評:此種類型除了利用二次函數(shù)在R上恒成立問題往往采用判別式法外,還需要討論二次項系數(shù)是否為0的情況
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知方程
的三個實根可分別作為一橢圓,一雙曲線.一拋物線的離心率,則
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
對一元二次方程
的兩個根的情況,判斷正確的是
A.一根小于1,另一根大于3 | B.一根小于-2,另一根大于2 |
C.兩根都小于0 | D.兩根都大于2 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設二次函數(shù)
滿足下列條件:①當
時,
的最小值為
,且圖像關于直線
對稱;②當
時,
恒成立.
(1)求
的值;
(2)求
的解析式;
(3)若
在區(qū)間
上恒有
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知函數(shù)
,若
對一切
恒成立.求實數(shù)
的取值范圍.(16分)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
的最小值和最大值分別為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)f(x)=x
2-3x+2的零點是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)
的兩個零點是2和3,則函數(shù)
的零點是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)
的定義域為[0 , m],值域為
,則m的取值范圍是( )
查看答案和解析>>