從集合{(x,y)|x2+y2≤4,x∈R,y∈R}內(nèi)任選一個(gè)元素(x,y),則x,y滿足x+y≥2的概率為
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:求出集合和不等式對應(yīng)的平面區(qū)域,求出對應(yīng)的面積,利用幾何概型的概率公式即可得到結(jié)論.
解答: 解:集合{(x,y)|x2+y2≤4,x∈R,y∈R}對應(yīng)的區(qū)域?yàn)榘霃綖?的圓及其內(nèi)部,
對應(yīng)的面積S=π×22=4π,
滿足x+y≥2對應(yīng)的區(qū)域?yàn)殛幱安糠郑瑢?yīng)的面積S=
1
4
×4π-
1
2
×2×2=π-2
,
則根據(jù)幾何概型的概率公式可得x,y滿足x+y≥2的概率為
π-2
,
故答案為:
π-2
點(diǎn)評:本題主要考查幾何概型的概率計(jì)算,求出對應(yīng)區(qū)域的面積是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x與y之間的一組數(shù)據(jù)如下表所示,則y與x的線性回歸方程y=bx+a必經(jīng)過點(diǎn)( 。
x123567
y1.11.75.66.27.49.5
A、(4,5.35)
B、(4,5.25)
C、(5,5.591)
D、(3,5.6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=a2-2i,z2=4+ai.
(Ⅰ)若z1-z2為純虛數(shù),求實(shí)數(shù)a的值;
(Ⅱ)若復(fù)數(shù)z=(z1-a2)z2,且|z|=10,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2的正方形ABCD沿對角線BD折疊,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=
2
,M為BE中點(diǎn)
(1)求證:AC⊥面BDE;
(2)求證:CM∥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次龍舟賽全程共3300m,某市中學(xué)生龍舟代表隊(duì)比賽過程中的速度記錄如下:前5min平均速度為100m/min;第6min開始到第15min勻速行駛,速度為120m/min;第16min開始為沖刺階段,平均速度為160m/min,并保持這個(gè)速度直到終點(diǎn).請以時(shí)間為橫坐標(biāo),該龍舟隊(duì)行駛的平均速度為縱坐標(biāo)建立直角坐標(biāo)系,畫出相應(yīng)時(shí)間段內(nèi)龍舟的平均速度隨時(shí)間變化的圖象,并根據(jù)圖象提供的信息回答下列問題.
(1)第13min的速度是多少?
(2)哪個(gè)時(shí)間段該龍舟隊(duì)的平均速度最快?
(3)隨著時(shí)間的推移,該龍舟隊(duì)的速度變化趨勢是怎樣的?
(4)該龍舟隊(duì)何時(shí)到達(dá)終點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+1|+ax(a∈R)
(1)當(dāng)a=1時(shí),畫出此時(shí)的函數(shù)圖象并寫出解答過程;
(2)若函數(shù)f(x)在R上具有單調(diào)性,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)M,N分別是曲線ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的動點(diǎn),求點(diǎn)M,N間的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2-4.若函數(shù)y=f(x)的圖象在點(diǎn)P(1,f(1))處的切線的傾斜角為45°,
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求f(x)在[-1,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-5),
b
=(x-1,-10),若
a
b
共線,則x=
 

查看答案和解析>>

同步練習(xí)冊答案