根據(jù)拋物線的光學(xué)原理:一水平光線射到拋物線上一點,經(jīng)拋物線反射后,反射光線必過焦點.然后求解此題:拋物線y2=4x上有兩個定點A、B分別在對稱軸的上、下兩側(cè),一水平光線射到A點后,反射光線會平行y軸,一水平光線射到B點后,反射光線所在直線的斜率為 -
4
3

(Ⅰ)求直線AB的方程.
(Ⅱ)在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求這個最大面積.
(1)由已知得焦點F(1,0),
且FA⊥x軸,
∴A (1,2),
同理kFB=-
4
3
,
得到B(4,-4),
所以直線AB的方程為2x+y-4=0.(6分)
(2)法一:設(shè)在拋物線AOB這段曲線上任一點P(x0,y0),
且1≤x0≤4,-4≤y0≤2.
則點P到直線AB的距離d=
|2x0+y0-4|
1+4
=
|2×
y20
4
+y0-4|
5
=
|
1
2
(y0+1)2-
9
2
|
5
,
所以當(dāng)y0=-1時,d取最大值
9
5
10

|AB|=3
5
(10分)
所以△PAB的面積最大值為S=
1
2
×3
5
×
9
5
10
=27
,
此時P點坐標(biāo)為(
1
4
,-1)
.(12分)
法二:
2x+y+m=0
y2=4x
?y2+2y+2m=0?△=4-8m=0?m=
1
2

dmax=
|
1
2
-(-4)|
5
=
9
5
10
,
∴△PAB的面積最大值為S=
1
2
×3
5
×
9
5
10
=27
,
此時P點坐標(biāo)為(
1
4
,-1)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)拋物線的光學(xué)原理:一水平光線射到拋物線上一點,經(jīng)拋物線反射后,反射光線必過焦點.然后求解此題:拋物線y2=4x上有兩個定點A、B分別在對稱軸的上、下兩側(cè),一水平光線射到A點后,反射光線會平行y軸,一水平光線射到B點后,反射光線所在直線的斜率為 -
43

(Ⅰ)求直線AB的方程.
(Ⅱ)在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求這個最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年黑龍江省鶴崗市東山一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

根據(jù)拋物線的光學(xué)原理:一水平光線射到拋物線上一點,經(jīng)拋物線反射后,反射光線必過焦點.然后求解此題:拋物線y2=4x上有兩個定點A、B分別在對稱軸的上、下兩側(cè),一水平光線射到A點后,反射光線會平行y軸,一水平光線射到B點后,反射光線所在直線的斜率為 
(Ⅰ)求直線AB的方程.
(Ⅱ)在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求這個最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年福建省漳州市東山一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

根據(jù)拋物線的光學(xué)原理:一水平光線射到拋物線上一點,經(jīng)拋物線反射后,反射光線必過焦點.然后求解此題:拋物線y2=4x上有兩個定點A、B分別在對稱軸的上、下兩側(cè),一水平光線射到A點后,反射光線會平行y軸,一水平光線射到B點后,反射光線所在直線的斜率為 
(Ⅰ)求直線AB的方程.
(Ⅱ)在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求這個最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年廣東省佛山市南海中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

根據(jù)拋物線的光學(xué)原理:一水平光線射到拋物線上一點,經(jīng)拋物線反射后,反射光線必過焦點.然后求解此題:拋物線y2=4x上有兩個定點A、B分別在對稱軸的上、下兩側(cè),一水平光線射到A點后,反射光線會平行y軸,一水平光線射到B點后,反射光線所在直線的斜率為 
(Ⅰ)求直線AB的方程.
(Ⅱ)在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求這個最大面積.

查看答案和解析>>

同步練習(xí)冊答案