過(guò)點(diǎn)P(1,2)作直線(xiàn)l,使直線(xiàn)l與點(diǎn)M(2,3)和點(diǎn)N(4,-5)距離相等,則直線(xiàn)l的方程為( )
A.y+2=-4(x+1)
B.3x+2y-7=0或4x+y-6=0
C.y-2=-4(x-1)
D.3x+2y-7=0或4x+y+6=0
【答案】分析:設(shè)出直線(xiàn)l的斜率表示出直線(xiàn)l的方程,然后利用點(diǎn)到直線(xiàn)的距離公式表示出M與N到直線(xiàn)l的距離,讓其相等得到關(guān)于k的方程,求出方程的解即可得到k的值,根據(jù)P的坐標(biāo)和求出的斜率k寫(xiě)出直線(xiàn)的方程即可.
解答:解:設(shè)直線(xiàn)l的斜率為k,則直線(xiàn)l的方程為y-2=k(x-1)即kx-y+2-k=0
由題意可得:=,
化簡(jiǎn)得k-1=3k+7或k-1=-3k-7,解得k=-4或k=-
則直線(xiàn)l的方程為:y-2=-4(x-1)或y-2=-(x-1)即3x+2y-7=0或4x+y-6=0.
故選B
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用點(diǎn)到直線(xiàn)的距離公式化簡(jiǎn)求值,會(huì)根據(jù)一點(diǎn)和斜率寫(xiě)出直線(xiàn)的方程,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖梯形ABCD,AD∥BC,∠A=90°,過(guò)點(diǎn)C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線(xiàn)BD與平面ABCE所成角的正切值;
(2)設(shè)線(xiàn)段AB的中點(diǎn)為P,在直線(xiàn)DE上是否存在一點(diǎn)M,使得PM∥面BCD?若存在,請(qǐng)指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點(diǎn),且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A(yíng),B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都七中高二(上)10月段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖梯形ABCD,AD∥BC,∠A=90°,過(guò)點(diǎn)C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線(xiàn)BD與平面ABCE所成角的正切值;
(2)設(shè)線(xiàn)段AB的中點(diǎn)為P,在直線(xiàn)DE上是否存在一點(diǎn)M,使得PM∥面BCD?若存在,請(qǐng)指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A(yíng),B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A(yíng),B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線(xiàn)MB的垂線(xiàn)x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線(xiàn)MB上射R的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案