已知z=1-i,w=(2-i)
.
z
-2
(Ⅰ)求|w|;
(Ⅱ)如果aw-b=
2i
z
(a,b∈R),求2a+b的值.
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(Ⅰ)由條件化簡(jiǎn) w為1+i,再根據(jù)復(fù)數(shù)模的定義求得|w|的值.
(Ⅱ)由條件利用兩個(gè)復(fù)數(shù)相等的充要條件,求得得a和b的值,可得2a+b的值.
解答: 解:(Ⅰ)∵w=(2-i)(1+i)-2=1+i,∴|w|=
12+12
=
2

(Ⅱ)由aw-b=
2i
z
,可得 a(1+i)-b=
2i
1-i
,即a-b+ai=-1+i,
a-b=-1
a=1
,解得a=1,b=2,∴2a+b=8.
點(diǎn)評(píng):本題主要考查兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),兩個(gè)復(fù)數(shù)相等的充要條件,求復(fù)數(shù)的模,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程x2-3x+a+4=0有兩個(gè)整數(shù)根.
(1)求證:這兩個(gè)整數(shù)根一個(gè)是奇數(shù),一個(gè)是偶數(shù);
(2)求證:a是負(fù)偶數(shù);
(3)當(dāng)方程的兩整數(shù)根同號(hào)時(shí),求a的值及這兩個(gè)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2-2x-3=0},B={x∈N|1≤x≤4}
(Ⅰ)求A∪B;
(Ⅱ)若記符號(hào)A-B={x|x∈A且x∉B},在圖中把表示“集合A-B”的部分用陰影涂黑;并求A-B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=lnx.
(Ⅰ)若?x∈[1,+∞),f(x)≤m(x-
1
x
)恒成立,求m的范圍;
(Ⅱ)求證:ln
42n+1
n
i=1
i
4i2-1
(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形的一邊是另一邊的兩倍,求證:它的最小邊在它的周長(zhǎng)的
1
6
1
4
之間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線f(x)=
log3(x+1)
x+1
(x>0)上有一點(diǎn)列Pn(xn,yn)(n∈N*),點(diǎn)Pn在x軸上的射影是Qn(xn,0),且xn=3xn-1+2(n≥2,n∈N*),x1=2.
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)設(shè)梯形PnQnQn+1Pn+1的面積是Sn,Tn=
1
S1
+
1
2S2
+…+
1
nSn
,試比較Tn與3的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中作出下列函數(shù)的圖象:
(1)y=|2-x|
(2)y=2x+1,x∈(-2,0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:不等式4x2+4(m-2)x+1>0在R上恒成立;命題q:方程
x2
m
+
y2
4-m
=1表示焦點(diǎn)在y軸上的橢圓.若“?p且q“為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查.若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,則抽取的2所學(xué)校均為小學(xué)的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案