在△ABC中,AB=AC,D是△ABC外接圓AC上的一點,AE⊥BD于E,求證BE=CD+DE.
考點:圓內接多邊形的性質與判定
專題:選作題,立體幾何
分析:延長BD到F使AF=AC,連結AF、CF、CD,證明DF=CD,AB=AF,即可證明結論.
解答: 證明:延長BD到F使AF=AC.
連結AF、CF、CD,則有∠AFB=∠ABF,∠AFC=∠ACF.
∵D在△ABC的外接圓上,
∴∠ACD=∠ABD,
從而∠AFD=∠ACD,
∴∠DCF=∠DFC,∴DF=CD.
∵AE⊥BF,AB=AF,
∴BE=EF=ED+DF=ED+CD.
點評:本題考查圓內接多邊形的性質與判定,考查學生分析解決問題的能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示,某幾何體的直觀圖、側視圖與俯視圖如圖所示,正視圖為矩形,F(xiàn)為CE上的點,且BF⊥平面ACE,AC交BD于點G.
(1)求證:AE∥平面BFD;
(2)求三棱錐C-BGF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解下列不等式:
(1)2x>8;
(2)(
1
2
x
2

(3)0.32-x>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了開闊學生的知識視野,某學校舉辦了一次數(shù)學知識競賽活動,共有800名學生參加,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)頻率分布表,解答下列問題:
(Ⅰ)填充頻率分布表中的空格(在解答中直接寫出對應空格序號的答案);
序號(i)分組(分數(shù))組中值(Gi頻數(shù)(人數(shù))頻率(Fi
1[60,70)650.12
2[70,80)7520
3[80,90)85120.24
4[90,100)95
合計501
(Ⅱ)規(guī)定成績不低于90分的同學能獲獎,請估計在參加的800名學生中大概有多少同學獲獎?
(Ⅲ)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出S的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在正方體ABCD-A′B′C′D′中,′E為DD′的中點,BD′為正方體的對角線,
(1)求證:BD′∥平面ACE;
(2)設正方體的棱長為a,沿著平面ACE將正方體截去一個棱錐D-ACE,求剩下的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=5,|
b
|=4,
a
b
的夾角為60°,試問:當k為何值時,
(1)向量k
a
-
b
a
+2
b
垂直?
(2)向量k
a
-
b
a
+2
b
平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若P是拋物線y2=4x上的一點,A(2,2)是平面內的一定點,F(xiàn)是拋物線的焦點,當P點坐標是
 
時,PA+PF最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用定義證明:已知函數(shù)f(x)=x+
1
x

(1)證明函數(shù)f(x)=x+
1
x
在區(qū)間[1,+∞)上是增函數(shù),
(2)求函數(shù)f(x)=x+
1
x
在區(qū)間[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsin(θ+
π
4
)=2
2
,曲線C2的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)0≤θ≤π).
(Ⅰ)求C2的普通方程,它表示什么曲線?
(Ⅱ)求C上的點到C1的最小距離.

查看答案和解析>>

同步練習冊答案