已知點P是△ABC所在平面內(nèi)一點,且滿足3
PA
+5
PB
+2
PC
=
0
,設(shè)△ABC的面積為S,則△PAB的面積為( 。
A、
2
3
S
B、
3
10
S
C、
1
2
S
D、
1
5
S
考點:正弦定理
專題:解三角形
分析:結(jié)合向量的加法運算,得出點P的位置,再比較三角形PAB與三角形CAB的底邊與高的關(guān)系即可.
解答: 解:如圖所示,設(shè)AB,AC的中點分別為M,N,由3
PA
+5
PB
+2
PC
=
0
得:3(
PA
+
PB
)=-2(
PB
+
PC
),
∴點P在MN上,且PM:PN=2:3,
∴P到邊AB的距離等于C到邊AB的距離的
2
5
×
1
2
=
1
5
,
則△PAB的面積為
1
5
S,
故選:D.
點評:此題考查了正弦、余弦定理,平面向量的數(shù)量積運算,根據(jù)題意得到“點P在MN上,且PM:PN=2:3”是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-5,5]上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+4x
(1)畫出函數(shù)f(x)的大致圖象,并寫出函數(shù)的單調(diào)增區(qū)間與單調(diào)減區(qū)間.
(2)若方程f(x)+2a=0有四個根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校數(shù)學(xué)教研組為了解學(xué)生學(xué)習(xí)數(shù)學(xué)的情況,采用分層抽樣的方法從高一600人、高二780人、高三720人中,抽取35人進(jìn)行問卷調(diào)查,則高二被抽取的人數(shù)為(  )
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線m:x+2y-1=0與直線n:2x-ky+3=0垂直,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x2-2x-3|,x∈R.
(Ⅰ)在區(qū)間[-2,4]上畫出函數(shù)f(x)的圖象;
(Ⅱ)寫出該函數(shù)在R上的單調(diào)區(qū)間;
(Ⅲ)求不等式f(x)>3的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,且
1
x
+
9
y
=1,求x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四組函數(shù)中,表示同一函數(shù)的是( 。
A、f(x)=
x2-1
x-1
,g(x)=x+1
B、f(x)=x,g(x)=
x2
x
C、f(x)=x,g(x)=
x2
D、f(x)=|x|,g(x)=
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將弧度轉(zhuǎn)化成角度:
2
3
π
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)在第一年初購買一臺價值為120萬元的設(shè)備M,M的價值在使用過程中逐年減少,從第2年到第6年,每年初M的價格比上年初減少10萬元;從第7年開始,每年初M的價值為上年初的75%,若第n年初M的價值為an
(1)求a3a7;
(2)求第n年初M的價值的表達(dá)式an;
(3)求數(shù)列an的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案