△ABC的三個(gè)頂點(diǎn)都在雙曲線上,一邊的兩個(gè)端點(diǎn)是B(0,6)和C(0,-6),另兩邊斜率的乘積是,求雙曲線的方程.

解:設(shè)雙曲線的方程為-=1(a>0,b>0),

依題意將點(diǎn)B的坐標(biāo)代入方程可得a=6,

設(shè)A(x0,y0)(x0≠0),則有-=1,①

·=.②

由①②消去y0,得=,x0≠0,∴b2=81.

故所求雙曲線的方程為-=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Rt△ABC的三個(gè)頂點(diǎn)都在拋物線y2=2px(p>0)上,且斜邊AB∥y軸,則斜邊上的高等于
2p
2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•楊浦區(qū)一模)橢圓T的中心為坐標(biāo)原點(diǎn)O,右焦點(diǎn)為F(2,0),且橢圓T過點(diǎn)E(2,
2
).△ABC的三個(gè)頂點(diǎn)都在橢圓T上,設(shè)三條邊的中點(diǎn)分別為M,N,P.
(1)求橢圓T的方程;
(2)設(shè)△ABC的三條邊所在直線的斜率分別為k1,k2,k3,且ki≠0,i=1,2,3.若直線OM,ON,OP的斜率之和為0,求證:
1
k1
+
1
k2
+
1
k3
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Rt△ABC的三個(gè)頂點(diǎn)都在半徑為13的球面上,若球心為O,Rt△ABC兩直角邊的長(zhǎng)分別為5和12,則三棱錐O-ABC的體積為
65
3
65
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個(gè)頂點(diǎn)都在橢圓
x2
a2
+y2=1(a>1)
上,其中A(0,1)為直角頂點(diǎn).若該三角形的面積的最大值為
27
8
,則實(shí)數(shù)a的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黃岡模擬)已知拋物線y2=2px(p>0),Rt△ABC的三個(gè)頂點(diǎn)都在拋物線上,且斜邊AB∥y軸,則斜邊上的高為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案