精英家教網 > 高中數學 > 題目詳情

已知函數.
(1)當時,求函數在點處的切線方程;
(2)若函數上的圖像與直線恒有兩個不同交點,求實數的取值范圍.

(1);(2).

解析試題分析:(1)先求原函數的導函數,根據求切線斜率,從而求得方程;(2)利用導函數求在已知范圍內的單調性,再把端點函數值與0,1比較,滿足題意解得的取值范圍..
試題解析:(1)
(2),由題意得
時,遞減,當時,遞增
.
考點:1、導數的幾何意義;2、利用導數判斷函數的單調性.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,

(Ⅰ)若曲線處的切線相互平行,求的值及切線斜率;
(Ⅱ)若函數在區(qū)間上單調遞減,求的取值范圍;
(Ⅲ)設函數的圖像C1與函數的圖像C2交于P、Q兩點,過線段PQ的中點作x軸的垂線分別交C1、C2于點M、N,證明:C1在點M處的切線與C2在點N處的切線不可能平行.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若曲線處的切線相互平行,求的值;
(2)試討論的單調性;
(3)設,對任意的,均存在,使得.試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(I)當時,求的單調區(qū)間
(Ⅱ)若不等式有解,求實數m的取值菹圍;
(Ⅲ)定義:對于函數在其公共定義域內的任意實數,稱的值為兩函數在處的差值。證明:當時,函數在其公共定義域內的所有差值都大干2。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,曲線在點處切線方程為.
(1)求的值;
(2)討論的單調性,并求的極大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數的值;
(Ⅲ)設,求在區(qū)間上的最小值.(為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的最大值為0,其中。
(1)求的值;
(2)若對任意,有成立,求實數的最大值;
(3)證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數其中,曲線在點處的切線方程為
(I)確定的值;
(II)設曲線在點處的切線都過點(0,2).證明:當時,;
(III)若過點(0,2)可作曲線的三條不同切線,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)若函數上有零點,求的最大值.

查看答案和解析>>

同步練習冊答案